首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Petrogenesis of Late Triassic mafic enclaves and host granodiorite in the Eastern Kunlun Orogenic Belt,China: Implications for the reworking of juvenile crust by delamination-induced asthenosphere upwelling
Institution:1. School of Geosciences, Yangtze University, Wuhan 430100, China;2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China;3. Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China;4. Jiangxi University of Technology, Nanchang 330098, China;5. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;1. School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China;2. Institute of Gold Geology, Chinese Armed Police Force, Langfang 065000, China;3. Centre for Exploration Targeting, School of Earth and Environment, University of Western Australia, Perth, WA 6009, Australia;4. Department of Earth and Oceans, James Cook University, Townsville, QLD, Australia
Abstract:Late Triassic granitoids containing abundant mafic microgranular enclaves (MMEs) occur widely in the Eastern Kunlun Orogenic Belt (EKOB). In this work, we present mineral chemistry, zircon U-Pb ages and L-Hf isotopes, whole-rock chemistry and S-Nd isotope compositions of the MMEs and host granodiorite from the Huda pluton in the Elashan area within the easternmost domain of the EKOB. These rocks contain inherited (Meso- to Neoproterozoic) and xenocrystic (ca. 240 Ma) zircon grains that yield apparent older ages, whereas the magmatic zircons from MMEs and granodiorite yield similar weighted mean ages around 224 Ma, which are interpreted as their crystallization ages. The MMEs have low SiO2 but high TiO2, TFe2O3, CaO, MgO and MnO concentrations with relatively high Mg# values (48–54) and 100MnO/(MnO + MgO + TFe2O3) ratios (1.2–1.6). They display identical Sr-Nd-Hf isotope compositions to the host granite. Combined with petrological evidence, we suggest that the MMEs are cognate cumulates that formed by pressure quenching during the late stage of magma evolution from the same parental magma of the host granodiorite, rather than a magma mixing origin. The granodiorite is calc-alkaline to high-K calc-alkaline, metaluminous I-type granite. They show relatively low SiO2 and MnO, but high MgO, Al2O3, CaO and TFe2O3 contents with Mg# values of 45–50. They are enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), such as Rb, Th, K and Pb, and are depleted in P and high field strength elements (HFSE) including Nb, Ta and Ti. These rocks display slightly negative Eu anomalies and low Sr/Y and La/Yb ratios. Together with the rim-ward chemically evolved nature of some phenocrysts, the comparatively high initial Sr isotope (0.70888–0.70912), low whole-rock εNd(t) (?5.6 to ?6.0) and zircon εHf(t) (?3.3 to ?0.1) values, and low Nb/Th (0.11–0.26) and Ta/U (0.53–0.68) ratios, we suggest that the granodiorite magma was sourced from the lower crust. Considering their comparatively young two-stage Nd and Hf model ages (1.42–1.49 Ga and 1.13–1.42 Ga, respectively) and same trace element character with the juvenile crust beneath the EKOB, we interpret the juvenile lower crust as the dominant source rocks for the granodiorite. Based on our data and regional geological evidence, we suggest that the partial melting of juvenile crust resulted from delamination-related asthenosphere mantle upwelling. The latter process resulted in extensive melting of the lower crust, producing a major Late Triassic magmatic flare-up event in the EKOB.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号