首页 | 本学科首页   官方微博 | 高级检索  
     检索      


PLANE-WAVE CONSTRAINTS IN 2D FILTER DESIGN1
Authors:D WALTHAM
Abstract:A method is presented for developing and/or evaluating 2D filters applied to seismic data. The approach used is to express linear 2D filtering operations in the space-frequency (x–ω) domain. Correction filters are then determined using plane-wave constraints. For example, requiring a vertically propagating plane wave to be unaffected by migration necessitates application of a half-derivative correction in Kirchhoff migration. The same approach allows determination of the region of time-offset space where half-derivative corrections are correct in x–t domain dip moveout. Finally, an x–ω domain dip filter is derived using the constraint that a plane wave be attenuated as its dip increases. This filter has the advantage that it is significantly faster than f–k domain dip filtering and can be used on irregularly spaced data. This latter property also allows the filter to be used for interpolation of irregular data onto a regular grid.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号