Assessing the accuracy of phase equilibrium software in reproducing the liquidus multiple saturation conditions of lunar and Martian basalt compositions |
| |
Authors: | Daniel F. Astudillo Manosalva Stephen M. Elardo |
| |
Affiliation: | Department of Geological Sciences, University of Florida, Gainesville, Florida, USA |
| |
Abstract: | Accurate computational modeling allows the use of software as a first approach to some petrological problems that typically require experimentation, but most programs have not yet been fully tested for accuracy with lunar or Martian melt compositions. The programs pMELTS, MAGPOX, and Perple_X stand out for phase equilibrium modeling, as their calibrations include experiments of lunar compositions or have precise thermodynamic constraints for similar compositions. A set of lunar mare basalts, picritic glasses, and basaltic Martian compositions with known experimentally determined multiple saturation point (MSP) conditions were used here for phase equilibrium modeling. The accuracy of each program was tested through the determination of MSPs on the liquidus of the selected compositions. This point in pressure–temperature space can be considered as a direct proxy of the stable phases and the equilibrium conditions during partial melting of mantle sources. We identify a trend in experimental data between MSP temperature and MgO, CaO, and SiO2 concentrations, and similar trends are found in model results. However, only Perple_X is able to closely match the experimental data, despite the fact it does not accurately model ilmenite saturation for high-Ti lunar basalts. We find that pMELTS miscalculates olivine saturation for MgO-rich compositions and MAGPOX systematically underestimates MSP pressure and temperatures and can only be used when olivine is the liquidus phase. For modeling lunar or Martian basalt compositions, Perple_X can be used for optimal results, although no software is yet capable of bypassing the need to constrain MSP conditions through experimentation. |
| |
Keywords: | |
|
|