首页 | 本学科首页   官方微博 | 高级检索  
     


Probabilistic spatial risk assessment of heat impacts and adaptations for London
Authors:Katie Jenkins  Jim Hall  Vassilis Glenis  Chris Kilsby  Mark McCarthy  Clare Goodess  Duncan Smith  Nick Malleson  Mark Birkin
Affiliation:1. Environmental Change Institute (ECI), University of Oxford, Oxford, UK
7. Environmental Change Institute (ECI), School of Geography and the Environment and Tyndall Centre for Climate Change Research, University of Oxford, Oxford, OX1 3QY, UK
2. School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK
3. Met Office, Hadley Centre, Fitzroy Road, Exeter, UK
4. Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norfolk, UK
5. LSE Cities, London School of Economics and Political Science, London, UK
6. School of Geography, University of Leeds, Leeds, UK
Abstract:High temperatures and heatwaves can cause large societal impacts by increasing health risks, mortality rates, and personal discomfort. These impacts are exacerbated in cities because of the Urban Heat Island (UHI) effect, and the high and increasing concentrations of people, assets and economic activities. Risks from high temperatures are now widely recognised but motivation and implementation of proportionate policy responses is inhibited by inadequate quantification of the benefits of adaptation options, and associated uncertainties. This study utilises high spatial resolution probabilistic projections of urban temperatures along with projections of demographic change, to provide a probabilistic risk assessment of heat impacts on urban society. The study focuses on Greater London and the surrounding region, assessing mortality risk, thermal discomfort in residential buildings, and adaptation options within an integrated framework. Climate change is projected to increase future heat-related mortality and residential discomfort. However, adjusting the temperature response function by 1–2 °C, to simulate adaptation and acclimatisation, reduced annual heat related mortality by 32–69 % across the scenarios tested, relative to a no adaptation scenario. Similar benefits of adaptation were seen for residential discomfort. The study also highlights additional benefits in terms of reduced mortality and residential discomfort that mitigating the urban heat island, by reducing albedo and anthropogenic heat emissions, could have.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号