首页 | 本学科首页   官方微博 | 高级检索  
     

面向对象和GURLS结合的高空间分辨率遥感数据云检测
引用本文:殷亚秋,冷玥,赵玉灵,安娜,鞠星. 面向对象和GURLS结合的高空间分辨率遥感数据云检测[J]. 测绘通报, 2019, 0(5): 109-112,142. DOI: 10.13474/j.cnki.11-2246.2019.0160
作者姓名:殷亚秋  冷玥  赵玉灵  安娜  鞠星
作者单位:中国国土资源航空物探遥感中心,北京,100083;中国地质大学(北京),北京,100083
基金项目:国土资源部航空地球物理与遥感地质重点实验室青年创新基金(2016YFL09);服务国家重大战略和国土开发保护地质调查项目(121201003000172705;121201003000172718)
摘    要:遥感信息获取过程中云是重要的干扰因素,随着国产高空间分辨率卫星数据的应用,实现数据的准确云检测对有效获取地面信息具有重要意义。本文以高分一号、高分二号多光谱影像为数据源,利用图像分割获取了同质对象,基于对象光谱、纹理和几何8种属性特征建立了规则集,以规则集为输入,利用阈值法和GURLS分类器结合进行了云检测。针对不同时相和场景的高分数据,将该方法与基于像素的最大似然法和SVM法进行了对比,结果表明该方法云提取精度均在95%以上,Kappa系数在0.9以上。

关 键 词:云检测  面向对象  GURLS  高空间分辨率  遥感影像
收稿时间:2018-06-29
修稿时间:2018-09-19

Cloud detection method of high spatial resolution remote sensing data combining object-oriented technique and GURLS classifier
YIN Yaqiu,LENG Yue,ZHAO Yuling,AN Na,JU Xing. Cloud detection method of high spatial resolution remote sensing data combining object-oriented technique and GURLS classifier[J]. Bulletin of Surveying and Mapping, 2019, 0(5): 109-112,142. DOI: 10.13474/j.cnki.11-2246.2019.0160
Authors:YIN Yaqiu  LENG Yue  ZHAO Yuling  AN Na  JU Xing
Affiliation:1. China Aero Geophysical Survey & Remote Sensing Center for Land and Resources, Beijing 100083, China;2. China University of Geosciences(Beijing), Beijing 100083, China
Abstract:Cloud is an important factor in remote sensing information acquisition. With the application of domestic high spatial resolution satellite data, accurate cloud detection has important significance to the ground information effective acquisition. In the paper, GF-1 and GF-2 multi-spectral images are used as data source to obtain homogenous objects by image segmentation firstly. Then based on spectral features, texture features, and geometrical features-9 features, a rule set is established. With the rule set as input, the GURLS classifier is used to detect cloud combined with threshold method. Applied on high resolution data with different time and scenarios, the method is compared with the pixel-based maximum likelihood method and SVM method. The result shows that the proposed method has a cloud extraction accuracy of over 95% and a Kappa coefficient of over 0.9.
Keywords:cloud detection  object-oriented  GURLS  high spatial resolution  remote sensing images  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《测绘通报》浏览原始摘要信息
点击此处可从《测绘通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号