首页 | 本学科首页   官方微博 | 高级检索  
     

基于邻域粗糙集和支持向量机的固结系数预测
引用本文:尹超,周爱红,袁颖,王帅伟. 基于邻域粗糙集和支持向量机的固结系数预测[J]. 吉林大学学报(地球科学版), 2019, 49(3): 746-754. DOI: 10.13278/j.cnki.jjuese.20170238
作者姓名:尹超  周爱红  袁颖  王帅伟
作者单位:1. 北京交通大学土木建筑工程学院, 北京 100044;2. 河北地质大学勘查技术与工程学院, 石家庄 050031;3. 中国地质科学院水文地质环境地质研究所, 石家庄 050061
基金项目:国家自然科学基金项目(41301015);河北省教育厅重点项目(ZD2015073,ZD2016038)
摘    要:采用邻域粗糙集和支持向量机建立滹沱河某地区软土固结系数的预测模型。基于自行改装的渗透固结仪,利用公式法确定不同压力下的固结系数。通过室内试验确定土体的指标参数,采用邻域粗糙集对该指标参数进行属性约简,将约简后的指标参数作为影响因素,分别建立支持向量机和神经网络的固结系数预测模型,预测未知样本的固结系数,并与实测值进行对比。结果表明:公式法可以准确客观地确定固结系数;支持向量机和BP神经网络建立的该地区软土固结系数预测模型均可以预测区域内未知点的固结系数,且支持向量机方法的预测精度比神经网络方法的预测精度提高了约10%。本文提出的方法直接从实验数据出发,通过易获取的影响因素建立特定地区固结系数预测模型,并可预测该区域其余未知点的固结系数。

关 键 词:固结系数  预测模型  支持向量机  邻域粗糙集  渗透固结仪
收稿时间:2017-12-18

Prediction of Consolidation Coefficient Based on Neighborhood Rough Set and Support Vector Machine
Yin Chao,Zhou Aihong,Yuan Ying,Wang Shuaiwei. Prediction of Consolidation Coefficient Based on Neighborhood Rough Set and Support Vector Machine[J]. Journal of Jilin Unviersity:Earth Science Edition, 2019, 49(3): 746-754. DOI: 10.13278/j.cnki.jjuese.20170238
Authors:Yin Chao  Zhou Aihong  Yuan Ying  Wang Shuaiwei
Affiliation:1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;2. School of Prospecting Technology & Engineering, Hebei GEO University, Shijiazhuang 050031, China;3. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science, Shijiazhuang 050061, China
Abstract:The prediction model of soft soil consolidation coefficient in Hutuo River was established by neighborhood rough set (NRS) and support vector machine(SVM). Based on the modified osmotic oedometer, the consolidation coefficient was determined under different pressures. The soil indices were determined by laboratory tests,and the attributes were reduced by NRS method. Subsequently, by taking the reduced indices as the influencing factors; the prediction model of consolidation coefficient by SVM and back propagation neural network (BPNN) was used to predict the consolidation coefficient of unknown samples,and the results were compared with the measured values. The results show that:the consolidation coefficient can be determined by formula method. The consolidation coefficient prediction model established by SVM and BPNN can be applied to predict the consolidation coefficients, and the prediction accuracy of SVM is about 10% higher than that of BPNN. The results are validated by the standard solution. In summary, the method presented is based on experimental data, the prediction model of consolidation coefficient is established through easily accessible factors, and can predict the consolidation coefficient of other unknown points in this area.
Keywords:consolidation coefficient  prediction model  support vector machine  neighbourhood rough set  osmotic oedometer  
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《吉林大学学报(地球科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(地球科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号