首页 | 本学科首页   官方微博 | 高级检索  
     

高光谱图像波段选择的改进二进制布谷鸟算法
引用本文:宋广钦,杜正舜,贺智. 高光谱图像波段选择的改进二进制布谷鸟算法[J]. 测绘通报, 2019, 0(4): 43-48. DOI: 10.13474/j.cnki.11-2246.2019.0110
作者姓名:宋广钦  杜正舜  贺智
作者单位:中山大学地理科学与规划学院综合地理信息研究中心,广东 广州510275;广东省城市化与地理环境空间模拟重点实验室,广东 广州510275;中山大学地理科学与规划学院综合地理信息研究中心,广东 广州510275;广东省城市化与地理环境空间模拟重点实验室,广东 广州510275;中山大学地理科学与规划学院综合地理信息研究中心,广东 广州510275;广东省城市化与地理环境空间模拟重点实验室,广东 广州510275
基金项目:国家自然科学基金(41501368);中央高校基本科研业务费用专项资金(16lgpy04)
摘    要:波段选择是高光谱遥感图像分类的重要前提,本文提出了一种用于高光谱遥感图像波段选择的改进二进制布谷鸟算法,通过使用混合二进制编码算法更新子代鸟巢和使用遗传算法交叉方式更新被发现鸟巢两个方面对二进制布谷鸟算法进行改进,找出在图像中起主要作用且相关性低的波段,实现对高光谱遥感图像降维。将本文算法运用于PaviaU数据集和AVIRIS数据集,并与二进制布谷鸟算法、二进制粒子群算法、最小冗余最大相关算法、Relief算法等进行对比分析。结果表明,改进二进制布谷鸟算法波段特征选择效率更高,且选取的波段更具代表性,能够较好地提高后续分类精度。

关 键 词:二进制布谷鸟算法  高光谱图像  降维  波段选择
收稿时间:2018-06-28

Improved binary cuckoo search algorithm for band selection in hyperspectral image
SONG Guangqin,DU Zhengshun,HE Zhi. Improved binary cuckoo search algorithm for band selection in hyperspectral image[J]. Bulletin of Surveying and Mapping, 2019, 0(4): 43-48. DOI: 10.13474/j.cnki.11-2246.2019.0110
Authors:SONG Guangqin  DU Zhengshun  HE Zhi
Affiliation:1. School of Geography Science and Planning, Center of Integrated Geographic Information Anlaysis, Sun Yat-sen University, Guangzhou 510275, China;2. Guangdong Key Laboratory for Urbanization and Geo-simulation, Guangzhou 510275, China
Abstract:Spectral band selection serves as an important part in hyperspectral image classification. In this paper, an improved binary cuckoo search algorithm for band selection in hyperspectral image is proposed. Binary cuckoo search algorithm is improved by these two ways, one of which is that we update the nests of offspring by using a binary encoding algorithm. Another one is that the found nests are updated based on the crossover mode of genetic algorithm. The improved binary cuckoo search algorithm achieves the goal of dimensionality reduction of hyperspectral image by finding the bands with low correlation and the vital function in the image. The improved binary cuckoo algorithm is applied to PaviaU datasets and AVIRIS datasets, compared with binary cuckoo algorithm, binary particle swarm algorithm, minimum redundancy maximum correlation algorithm, relief algorithm. The results show that the improved binary cuckoo search algorithm is more efficient in the band selection, and the selected bands are more representative and can improve the precision of the image classification.
Keywords:binary cuckoo search algorithm  hyperspectral image  dimensionality reduction  band selection  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘通报》浏览原始摘要信息
点击此处可从《测绘通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号