首页 | 本学科首页   官方微博 | 高级检索  
     

现实与赛博空间数据相结合的城市活动事件时空建模
引用本文:唐炉亮,戴领,任畅,张霞. 现实与赛博空间数据相结合的城市活动事件时空建模[J]. 测绘学报, 2019, 48(5): 618-629. DOI: 10.11947/j.AGCS.2019.20180327
作者姓名:唐炉亮  戴领  任畅  张霞
作者单位:武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉,430079;武汉大学城市设计学院,湖北武汉,430070
基金项目:国家重点研发计划(2017YFB0503604;2016YFE0200400);国家自然科学基金(41671442;41571430;41271442);教育部联合基金(6141A02022341)
摘    要:城市活动事件(如文化、娱乐、体育等事件)的规模与影响力是城市经济文化发展的重要体现,其发生的全过程对城市现实空间与赛博空间都会产生巨大影响,从现实空间与赛博空间对城市活动事件的演化感知、动态建模与时空分析,具有重要的理论研究与应用价值。提出了一种结合现实空间交通数据与赛博空间社交媒体数据的城市活动事件时空建模分析方法,从事件进行中的交通轨迹,探测识别与事件显著相关的城市时空区域和交通流,分析现实空间事件热度的时空变化;从事件发生全过程的社交媒体数据中,探测分析赛博空间事件热度的时空变化;通过将现实空间和赛博空间的融合,建立城市活动事件时空模型,刻画事件全过程中城市地理空间与城市行为空间的时空演变特征。以2015年周杰伦"魔天伦2.0"世界巡回演唱会(武汉站)事件为例,采用武汉市出租车GPS轨迹数据和微博数据,对演唱会的事前、事中、事后实现城市地理空间与行为空间全过程建模与时空演变分析,并与单一数据源事件刻画模型进行比较,结果显示本方法能更合理地结合现实空间和赛博空间刻画城市活动事件。

关 键 词:城市活动事件  时空分析  GPS轨迹  社交媒体数据  多源数据
收稿时间:2018-07-09
修稿时间:2018-12-10

Spatio-temporal modeling of city events combining datasets in cyberspace and real space
TANG Luliang,DAI Ling,REN Chang,ZHANG Xia. Spatio-temporal modeling of city events combining datasets in cyberspace and real space[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5): 618-629. DOI: 10.11947/j.AGCS.2019.20180327
Authors:TANG Luliang  DAI Ling  REN Chang  ZHANG Xia
Affiliation:1. State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China;2. School of Urban Design, Wuhan University, Wuhan 430070, China
Abstract:The scale and impacts of city events, including cultural, entertainment and sporting events, reflect the economics and culture of a city to a certain extent.The occurrence of events affects urban city significantly both online in cyberspace and offline in real space. The evolutionary perception, dynamic modeling and spatio-temporal analysis of city events from cyberspace and real space, are of important theoretical research and application value. This article proposes a novel approach of city events spatio-temporal modeling and analysis with trajectories and social media datasets in real space and cyberspace respectively. The approach firstly identifies statistically significant anomalous city regions and traffic flows with trajectories during the events, analyzing spatio-temporal change of events in real space, then analyzes spatio-temporal change during the whole process of city events in cyberspace.Finally, this article presents a modeling approach for characterizing the development and evolution of urban geospatial and behavioral space throughout events, with datasets in cyberspace and real space combined. Taking the Opus Ⅱ Jay World Tour in 2015 as an example, employing taxi GPS trace data and Weibo data in Wuhan, the proposed method realizes the whole process modeling and evolution analysis of urban geospatial and behavioral space before, during and after the event. Then the method is compared with two other approaches that use either real space dataset or cyberspace dataset alone. The experimental results show that the proposed approach measures the impact of an event both in cyberspace and real space with reason, and describes city events effectively.
Keywords:city events  spatio-temporal analysis  GPS trajectory  socialmedia data  multiple datasets
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《测绘学报》浏览原始摘要信息
点击此处可从《测绘学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号