首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4161篇
  免费   736篇
  国内免费   2056篇
测绘学   8篇
大气科学   26篇
地球物理   681篇
地质学   5643篇
海洋学   177篇
天文学   8篇
综合类   197篇
自然地理   213篇
  2024年   28篇
  2023年   86篇
  2022年   130篇
  2021年   145篇
  2020年   174篇
  2019年   186篇
  2018年   193篇
  2017年   215篇
  2016年   232篇
  2015年   204篇
  2014年   278篇
  2013年   263篇
  2012年   347篇
  2011年   279篇
  2010年   246篇
  2009年   255篇
  2008年   334篇
  2007年   320篇
  2006年   314篇
  2005年   277篇
  2004年   248篇
  2003年   262篇
  2002年   195篇
  2001年   203篇
  2000年   207篇
  1999年   242篇
  1998年   170篇
  1997年   148篇
  1996年   138篇
  1995年   100篇
  1994年   123篇
  1993年   89篇
  1992年   77篇
  1991年   59篇
  1990年   39篇
  1989年   33篇
  1988年   30篇
  1987年   35篇
  1986年   18篇
  1985年   11篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1978年   7篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1954年   1篇
排序方式: 共有6953条查询结果,搜索用时 0 毫秒
1.
Abstract Large calcite veins and pods in the Proterozoic Corella Formation of the Mount Isa Inlier provide evidence for kilometre-scale fluid transport during amphibolite facies metamorphism. These 10- to 100-m-scale podiform veins and their surrounding alteration zones have similar oxygen and carbon isotopic ratios throughout the 200 × 10-km Mary Kathleen Fold Belt, despite the isotopic heterogeneity of the surrounding wallrocks. The fluids that formed the pods and veins were not in isotopic equilibrium with the immediately adjacent rocks. The pods have δ13Ccalcite values of –2 to –7% and δ18Ocalcite values of 10.5 to 12.5%. Away from the pods, metadolerite wallrocks have δ18Owhole-rock values of 3.5 to 7%. and unaltered banded calc-silicate and marble wallrocks have δ13Ccalcite of –1.6 to –0.6%, and δ18Ocalcite of 18 to 21%. In the alteration zones adjacent to the pods, the δ18O values of both metadolerite and calc-silicate rocks approach those of the pods. Large calcite pods hosted entirely in calc-silicates show little difference in isotopic composition from pods hosted entirely in metadolerite. Thus, 100- to 500-m-scale isotopic exchange with the surrounding metadolerites and calc-silicates does not explain the observation that the δ18O values of the pods are intermediate between these two rock types. Pods hosted in felsic metavolcanics and metasiltstones are also isotopically indistinguishable from those hosted in the dominant metadolerites and calc-silicates. These data suggest the veins are the product of infiltration of isotopically homogeneous fluids that were not derived from within the Corella Formation at the presently exposed crustal level, although some of the spread in the data may be due to a relatively small contribution from devolatilization reactions in the calc-silicates, or thermal fluctuations attending deformation and metamorphism. The overall L-shaped trend of the data on plots of δ13C vs. δ18O is most consistent with mixing of large volumes of externally derived fluids with small volumes of locally derived fluid produced by devolatilization of calc-silicate rocks. Localization of the vein systems in dilatant sites around metadolerite/calc-silicate boundaries indicates a strong structural control on fluid flow, and the stable isotope data suggest fluid migration must have occurred at scales greater than at least 1 km. The ultimate source for the external fluid is uncertain, but is probably fluid released from crystallizing melts derived from the lower crust or upper mantle. Intrusion of magmas below the exposed crustal level would also explain the high geothermal gradient calculated for the regional metamorphism.  相似文献   
2.
本文论述了保安地区火山岩的地质、岩石、副矿物、岩石化学、微量元素、稀土元素、稳定同位素、火山岩相及火山机构等特征。并对其演化规律、形成机制与成矿作用的关系,作了初步探讨。  相似文献   
3.
Pressures of Crystallization of Icelandic Magmas   总被引:1,自引:0,他引:1  
Iceland lies astride the Mid-Atlantic Ridge and was createdby seafloor spreading that began about 55 Ma. The crust is anomalouslythick (20–40 km), indicating higher melt productivityin the underlying mantle compared with normal ridge segmentsas a result of the presence of a mantle plume or upwelling centeredbeneath the northwestern edge of the Vatnajökull ice sheet.Seismic and volcanic activity is concentrated in 50 km wideneovolcanic or rift zones, which mark the subaerial Mid-AtlanticRidge, and in three flank zones. Geodetic and geophysical studiesprovide evidence for magma chambers located over a range ofdepths (1·5–21 km) in the crust, with shallow magmachambers beneath some volcanic centers (Katla, Grimsvötn,Eyjafjallajökull), and both shallow and deep chambers beneathothers (e.g. Krafla and Askja). We have compiled analyses ofbasalt glass with geochemical characteristics indicating crystallizationof ol–plag–cpx from 28 volcanic centers in the Western,Northern and Eastern rift zones as well as from the SouthernFlank Zone. Pressures of crystallization were calculated forthese glasses, and confirm that Icelandic magmas crystallizeover a wide range of pressures (0·001 to 1 GPa), equivalentto depths of 0–35 km. This range partly reflects crystallizationof melts en route to the surface, probably in dikes and conduits,after they leave intracrustal chambers. We find no evidencefor a shallow chamber beneath Katla, which probably indicatesthat the shallow chamber identified in other studies containssilica-rich magma rather than basalt. There is reasonably goodcorrelation between the depths of deep chambers (> 17 km)and geophysical estimates of Moho depth, indicating that magmaponds at the crust–mantle boundary. Shallow chambers (<7·1 km) are located in the upper crust, and probablyform at a level of neutral buoyancy. There are also discretechambers at intermediate depths (11 km beneath the rift zones),and there is strong evidence for cooling and crystallizing magmabodies or pockets throughout the middle and lower crust thatmight resemble a crystal mush. The results suggest that themiddle and lower crust is relatively hot and porous. It is suggestedthat crustal accretion occurs over a range of depths similarto those in recent models for accretionary processes at mid-oceanridges. The presence of multiple stacked chambers and hot, porouscrust suggests that magma evolution is complex and involvespolybaric crystallization, magma mixing, and assimilation. KEY WORDS: Iceland rift zones; cotectic crystallization; pressure; depth; magma chamber; volcanic glass  相似文献   
4.
Internal surface, formation factor, Nuclear Magnetic Resonance (NMR)-T2 relaxation times and pore radius distributions were measured on representative core samples for the estimation of hydraulic permeability. Permeability is estimated using various versions of the classic Kozeny–Carman-equation (K–C) and a further development of K–C, the fractal PaRiS-model, taking into account the internal surface. In addition to grain and pore size distribution, directly connected to permeability, internal surface reflects the internal structure (“micro morphology”). Lithologies could be grouped with respect to differences in internal surface. Most melt rich impact breccia lithologies exhibit large internal surfaces, while Tertiary post-impact sediments and Cretaceous lithologies in displaced megablocks display smaller internal surfaces. Investigations with scanning electron microscopy confirm the correlation between internal surface and micro morphology. In addition to different versions of K–C, estimations by means of NMR, pore radius distributions and some gas permeability measurements serve for cross-checking and calibration. In general, the different estimations from the independent methods and the measurements are in satisfactory accordance. For Tertiary limestones and Suevites bulk with very high porosities (up to 35%) permeabilites between 10−14 and 10−16 m2 are found, whereas in lower Suevite, Cretaceous anhydrites and dolomites, bulk permeabilites are between 10−15 and 10−23 m2.  相似文献   
5.
选择辽西为中心,以近东西向延伸800km的辽蒙地质走廊为研究区,通过年代学研究,确认130Ma以来的中、新生代火山活动对称分布的时空格局,具有“中间老、两侧新”的特点,而且随着时间的推移,软流圈来源的岩浆向东西两侧侧向流动,岩浆来源不断加深。在此基础上提出“软流圈底辟体上涌和水平侧向流动”的模式。  相似文献   
6.
Contaminant migration behaviour in the unsaturated zone of a fractured porous aquifer is discussed in the context of a study site in Cheshire, UK. The site is situated on gently dipping sandstones, adjacent to a linear lagoon historically used to dispose of industrial wastes containing chlorinated solvents. Two cores of more than 100 m length were recovered and measurements of chlorinated hydrocarbons (CHCs), inorganic chemistry, lithology, fracturing and aquifer properties were made. The results show that selecting an appropriate vertical sampling density is crucial both to providing an understanding of contaminant pathways and distinguishing whether CHCs are present in the aqueous or non-aqueous phase. The spacing of such sampling should be on a similar scale to the heterogeneity that controls water and contaminant movement. For some sections of the Permo-Triassic aquifer, significant changes in lithology and permeability occur over vertical distances of less than 1 m and samples need to be collected at this interval, otherwise considerable resolution is lost, potentially leading to erroneous interpretation of data. At this site, although CHC concentrations were high, the consistent ratio of the two main components of the plume (tetrachloroethene and trichloroethene) provided evidence of movement in the aqueous phase rather than in dense non-aqueous phase liquid (DNAPL).  相似文献   
7.
Two apparently distinct, sub-parallel, paleo-subduction zonescan be recognized along the northern margin of the Tibetan Plateau:the North Qilian Suture Zone (oceanic-type) with ophioliticmélanges and high-pressure eclogites and blueschistsin the north, and the North Qaidam Belt (continental-type) inthe south, an ultrahigh-pressure (UHP) metamorphic terrane comprisingpelitic and granitic gneisses, eclogites and garnet peridotites.Eclogites from both belts have protoliths broadly similar tomid-ocean ridge basalts (MORB) or oceanic island basalts (OIB)in composition with overlapping metamorphic ages (480–440Ma, with weighted mean ages of 464 ± 6 Ma for North Qilianand 457 ± 7 Ma for North Qaidam), determined by zirconU–Pb sensitive high-resolution ion microprobe dating.Coesite-bearing zircon grains in pelitic gneisses from the NorthQaidam UHP Belt yield a peak metamorphic age of 423 ±6 Ma, 40 Myr younger than the age of eclogite formation, anda retrograde age of 403 ± 9 Ma. These data, combinedwith regional relationships, allow us to infer that these twoparallel belts may represent an evolutionary sequence from oceanicsubduction to continental collision, and continental underthrusting,to final exhumation. The Qilian–Qaidam Craton was probablya fragment of the Rodinia supercontinent with a passive marginand extended oceanic lithosphere in the north, which was subductedbeneath the North China Craton to depths >100 km at c. 423Ma and exhumed at c. 403 Ma (zircon rim ages in pelitic gneiss). KEY WORDS: HP and UHP rocks; subduction belts; zircon SHRIMP ages; Northern Tibetan Plateau  相似文献   
8.
About 30 samples representing major lithologies of Sulu ultrahigh-pressure (UHP) metamorphic rocks were collected from surface exposures and exploration wells, and compressional (Vp) and shear wave (Vs) velocities and their directional dependence (anisotropy) were determined over a range of constant confining pressures up to 600 MPa and temperatures ranging from 20 to 600 °C. Samples range in composition from acidic to ultramafic. P- and S-wave velocities measured at 600 MPa vary from 5.08 to 8.64 km/s and 2.34 to 4.93 km/s, respectively. Densities are in the range from 2.60 to 3.68 g/cm3. To make a direct tie between seismic measurements (refraction and reflection) and subsurface lithologies, the experimental velocity data (corresponding to shallow depths) were used to calculate velocity profiles for the different lithologies and profiles of reflection coefficients at possible lithologic interfaces across the projected 5000-m Chinese Continental Scientific Drilling Program (CCSD) crustal segment. Comparison of calculated in situ velocities with respective intrinsic velocities suggests that the in situ velocities at shallow depths are lowered by an increased abundance of open microcracks. The strongly reflective zone beneath the Donghai drill site can be explained by the impedance contrasts between the different lithologies. Contacts between eclogite/peridotite and felsic rocks (gt-gneiss, granitic gneiss), in particular, may give rise to strong seismic reflections. In addition, shear-induced (lattice preferred orientation (LPO)-related) seismic anisotropy can increase reflectivity. For the explanation of the high velocity bodies (>6.4 km/s) around 1000 m and below 3200-m depth, large proportions of eclogite/peridotite (about 40 and 30 vol.%, respectively) are needed.  相似文献   
9.
The Bouguer anomaly and the total intensity magnetic maps of Saurashtra have delineated six circular gravity highs and magnetic anomalies of 40-60 mGal (10−5m/s2) and 800-1000 nT, respectively. Three of them in western Saurashtra coincide with known volcanic plugs associated with Deccan Volcanic Province (DVP), while the other three in SE Saurashtra coincide with rather concealed plugs exposed partially. The DVP represents different phases of eruption during 65.5±2.5 Ma from the Reunion plume. The geochemical data of the exposed rock samples from these plugs exhibit a wide variation in source composition, which varies from ultramafic/mafic to felsic composition of volcanic plugs in western Saurashtra and an alkaline composition for those in SE Saurashtra. Detailed studies of granophyres and alkaline rocks from these volcanic plugs reveal a calc-alkaline differentiation trend and a continental tectonic setting of emplacement. The alkaline plugs of SE Saurashtra are associated with NE-SW oriented structural trends, related to the Gulf of Cambay and the Cambay rift basin along the track of the Reunion plume. This indicates a deeper source for these plugs compared to those in the western part and may represent the primary source magma. The Junagadh plug with well differentiated ring complexes in western Saurashtra shows well defined centers of magnetic anomaly while the magnetic anomalies due to other plugs are diffused though of the same amplitude. This implies that other plugs are also associated with mafic/ultramafic components, which may not be differentiated and may be present at subsurface levels. Paleomagnetic measurements on surface rock samples from DVP in Saurashtra suggest a susceptibility of 5.5×10−2 SI units with an average Koenigsberger ratio (Qn) of almost one and average direction of remanent magnetization of D=147.4° and I=+56.1°. The virtual geomagnetic pole (VGP) position computed from the mean direction of magnetization for the volcanic plugs and Deccan basalt of Saurashtra is 30°N and 74°W, which is close to the VGP position corresponding to the early phases of Deccan eruption. Modeling of gravity and magnetic anomalies along two representative profiles across Junagadh and Barda volcanic plugs suggest a bulk density of 2900 and 2880 kg/m3, respectively and susceptibility of 3.14×10−2 SI units with a Qn ratio of 0.56 which are within the range of their values obtained from laboratory measurements on exposed rock samples. The same order of gravity and magnetic anomalies observed over the volcanic plugs of Saurashtra indicates almost similar bulk physical properties for them. The inferred directions of magnetization from magnetic anomalies, however, are D=337° and 340° and I=−38° and −50° which represent the bulk direction of magnetization and also indicate a reversal of the magnetic field during the eruption of these plugs. Some of these plugs are associated with seismic activities of magnitude ≤4 at their contacts. Based on this analysis, other circular/semi-circular gravity highs of NW India can be qualitatively attributed to similar subsurface volcanic plugs.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号