首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50675篇
  免费   7171篇
  国内免费   9647篇
测绘学   6069篇
大气科学   4990篇
地球物理   7578篇
地质学   24740篇
海洋学   5300篇
天文学   5056篇
综合类   3310篇
自然地理   10450篇
  2024年   318篇
  2023年   859篇
  2022年   1971篇
  2021年   2191篇
  2020年   2044篇
  2019年   2390篇
  2018年   1784篇
  2017年   2148篇
  2016年   2154篇
  2015年   2340篇
  2014年   2755篇
  2013年   3038篇
  2012年   2929篇
  2011年   3037篇
  2010年   2556篇
  2009年   3279篇
  2008年   3121篇
  2007年   3244篇
  2006年   3240篇
  2005年   2912篇
  2004年   2634篇
  2003年   2454篇
  2002年   2135篇
  2001年   1811篇
  2000年   1823篇
  1999年   1543篇
  1998年   1377篇
  1997年   1001篇
  1996年   805篇
  1995年   692篇
  1994年   668篇
  1993年   539篇
  1992年   421篇
  1991年   327篇
  1990年   247篇
  1989年   183篇
  1988年   151篇
  1987年   101篇
  1986年   54篇
  1985年   50篇
  1984年   32篇
  1983年   25篇
  1982年   15篇
  1981年   17篇
  1980年   12篇
  1979年   6篇
  1978年   14篇
  1977年   6篇
  1976年   4篇
  1954年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The structure, functioning and hydrodynamic properties of aquifers can be determined from an analysis of the spatial variability of baseflow in the streams with which they are associated. Such analyses are based on simple low‐cost measurements. Through interpreting the hydrological profiles (Q = f(A)) it is possible to locate the aquifer(s) linked to the stream network and to determine the type of interrelated flow, i.e. whether the stream drains or feeds the aquifer. Using an analytical solution developed for situations with a positive linear relationship, i.e. where the baseflow increases linearly with increasing catchment size, it is also possible to estimate the permeability of the aquifer(s) concerned at catchment scale. Applied to the hard‐rock aquifers of the Oman ophiolite, this method shows that the ‘gabbro’ aquifer is more permeable than the ‘peridotite’ aquifer. As a consequence the streams drain the peridotites and ‘leak’ into the gabbro. The hydrological profiles within the peridotite are linear and positive, and indicate homogeneity in the hydrodynamic properties of these formations at the kilometre scale. The permeability of the peridotite is estimated at 5 · 10?7 to 5 · 10?8 m/s. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
2.
Two distinct age estimates for eclogite-facies metamorphism in the Sanbagawa belt have been proposed: (i) c.  120–110 Ma based on a zircon SHRIMP age for the Western Iratsu unit and (ii) c.  88–89 Ma based on a garnet–omphacite Lu–Hf isochron age from the Seba and Kotsu eclogite units. Despite the contrasting estimates of formation ages, petrological studies suggest the formation conditions of the Western Iratsu unit are indistinguishable from those of the other two units—all ∼20 kbar and 600–650 °C. Studies of the associated geological structures suggest the Seba and Western Iratsu units are parts of a larger semi-continuous eclogite unit. A combination of geochronological and petrological studies for the Western Iratsu eclogite offers a resolution to this discrepancy in age estimates. New Lu–Hf dating for the Western Iratsu eclogite yields an age of 115.9 ± 0.5 Ma that is compatible with the zircon SHRIMP age. However, petrological studies show that there was significant garnet growth in the Western Iratsu eclogite before eclogite facies metamorphism, and the early core growth is associated with a strong concentration of Lu. Pre-eclogite facies garnet (Grt1) includes epidote–amphibolite facies parageneses equilibrated at 550–650 °C and ∼10 kbar, and this is overgrown by prograde eclogite facies garnet (Grt2). The Lu–Hf age of c.  116 Ma is strongly skewed to the isotopic composition of Grt1 and is interpreted to reflect the age of the pre-eclogite phase. The considerable time gap ( c.  27 Myr) between the two Lu–Hf ages suggests they may be related to separate tectonic events or distinct phases in the evolution of the Sanbagawa subduction zone.  相似文献   
3.
In this work, the factors controlling the formation and preservation of high-pressure mineral assemblages in the metamorphosed orthopyroxene-bearing metagranitoids of the Sandmata Complex, Aravalli-Delhi Mobile Belt (ADMB), northwestern India have been modelled. The rocks range in composition from farsundite through quartz mangerite to opdalite, and with varying K2O, Ca/(Ca + Na)rock and FeOtot + MgO contents. A two stage metamorphic evolution has been recorded in these rocks.
An early hydration event stabilized biotite with or without epidote at the expense of magmatic orthopyroxene and plagioclase. Subsequent high-pressure granulite facies metamorphism (∼15 kbar, ∼800 °C) of these hydrated rocks produced two rock types with contrasting mineralogy and textures. In the non-migmatitic metagranitoids, spectacular garnet ± K-feldspar ± quartz corona was formed around reacting biotite, plagioclase, quartz and/or pyroxene. In contrast, biotite ± epidote melting produced migmatites, containing porphyroblastic garnet incongruent solids and leucosomes.
Applying NCKFMASHTO T–M (H2O) and P–T pseudosection modelling techniques, it is demonstrated that the differential response of these magmatic rocks to high-pressure metamorphism is primarily controlled by the scale of initial hydration. Rocks, which were pervasively hydrated, produced garnetiferous migmatites, while for limited hydration, the same metamorphism formed sub-solidus garnet-bearing coronae. Based on the sequence of mineral assemblage evolution and the mineral compositional zoning features in the two metagranitoids, a clockwise metamorphic P–T path is constrained for the high-pressure metamorphic event. The finding has major implications in formulating geodynamic model of crustal amalgamation in the ADMB.  相似文献   
4.
5.
A research that we conducted in 1963 on the evolution of the binaries based on the available orbital data to obtain a philosophical degree, led to the establishment of an interesting and new diagram between the logarithm of the total mass and a particular parameterX, bound to the areal constant. This appeared to have a real physical significance but the basic observational material was insufficiently extended to assure its undeniable existence. In 1981, a new research based on a more extended orbital material, has confirmed this diagram. Presently, another important increase in the orbital material and the availability of highly accurate trigonometric parallaxes produced by the Hipparcos satellite, gave us the opportunity to confirm once more the stability of this diagram. This last research is here described.  相似文献   
6.
7.
8.
9.
We present an improved analytic calculation for the tidal radius of satellites and test our results against N -body simulations.
The tidal radius in general depends upon four factors: the potential of the host galaxy, the potential of the satellite, the orbit of the satellite and the orbit of the star within the satellite . We demonstrate that this last point is critical and suggest using three tidal radii to cover the range of orbits of stars within the satellite. In this way we show explicitly that prograde star orbits will be more easily stripped than radial orbits; while radial orbits are more easily stripped than retrograde ones. This result has previously been established by several authors numerically, but can now be understood analytically. For point mass, power-law (which includes the isothermal sphere), and a restricted class of split power-law potentials our solution is fully analytic. For more general potentials, we provide an equation which may be rapidly solved numerically.
Over short times (≲1–2 Gyr ∼1 satellite orbit), we find excellent agreement between our analytic and numerical models. Over longer times, star orbits within the satellite are transformed by the tidal field of the host galaxy. In a Hubble time, this causes a convergence of the three limiting tidal radii towards the prograde stripping radius. Beyond the prograde stripping radius, the velocity dispersion will be tangentially anisotropic.  相似文献   
10.
We use cosmological smooth particle hydrodynamical (SPH) simulations to study the effects of mergers in the star formation history of galactic objects in hierarchical clustering scenarios. We find that during some merger events, gaseous discs can experience two starbursts: the first one during the orbital decay phase, owing to gas inflows driven as the satellite approaches, and the second one when the two baryonic clumps collide. A trend for these first induced starbursts to be more efficient at transforming the gas into stars is also found. We detect that systems that do not experience early gas inflows have well-formed stellar bulges and more concentrated potential wells, which seem to be responsible for preventing further gas inward transport triggered by tidal forces. The potential wells concentrate owing to the accumulation of baryons in the central regions and of dark matter as the result of the pulling in by baryons. The coupled evolution of the dark matter and baryons would lead to an evolutionary sequence during which systems with shallower total potential wells suffer early gas inflows during the orbital decay phase that help to feed their central mass concentration, pulling in dark matter and contributing to build up more stable systems. Within this scenario, starbursts triggered by early gas inflows are more likely to occur at early stages of evolution of the systems and to be an important contributor to the formation of stellar bulges. Our results constitute the first proof that bulges can form as the product of collapse, collisions and secular evolution in a cosmological framework, and they are consistent with a rejuvenation of the stellar population in bulges at intermediate z with, at least, 50 per cent of the stars (in SCDM) being formed at high z .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号