首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61780篇
  免费   9809篇
  国内免费   13728篇
测绘学   5839篇
大气科学   5927篇
地球物理   11858篇
地质学   35375篇
海洋学   6229篇
天文学   3363篇
综合类   4455篇
自然地理   12271篇
  2024年   209篇
  2023年   583篇
  2022年   1671篇
  2021年   2001篇
  2020年   2111篇
  2019年   2527篇
  2018年   2035篇
  2017年   2254篇
  2016年   2503篇
  2015年   2703篇
  2014年   3367篇
  2013年   3498篇
  2012年   3646篇
  2011年   4032篇
  2010年   3392篇
  2009年   4049篇
  2008年   4031篇
  2007年   4367篇
  2006年   4336篇
  2005年   3718篇
  2004年   3492篇
  2003年   3281篇
  2002年   2910篇
  2001年   2564篇
  2000年   2327篇
  1999年   2100篇
  1998年   1853篇
  1997年   1624篇
  1996年   1461篇
  1995年   1181篇
  1994年   1203篇
  1993年   1000篇
  1992年   782篇
  1991年   551篇
  1990年   498篇
  1989年   393篇
  1988年   295篇
  1987年   190篇
  1986年   144篇
  1985年   114篇
  1984年   62篇
  1983年   42篇
  1982年   36篇
  1981年   31篇
  1980年   24篇
  1979年   30篇
  1978年   37篇
  1977年   24篇
  1973年   4篇
  1954年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The Bear Brook Watershed in Maine (BBWM) is a long-term research site established to study the response of forest ecosystem function to environmental disturbances of chronic acidic deposition and ecosystem nitrogen enrichment. Starting in 1989, the West Bear (treated) watershed received bimonthly applications of ammonium sulfate [(NH4)2SO4] fertilizer from above the canopy, whereas East Bear (reference) received ambient deposition. The treatments were stopped in 2016, marking the beginning of the recovery phase. Research at the site has focused on soils, streams, and vegetation. Here, we describe data collected over three decades at the BBWM—input and stream output nutrient fluxes, quantitative soil pits and soil chemistry, and soil temperature and moisture.  相似文献   
2.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
3.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
4.
为了揭示黑龙江哈尔滨白渔泡国家湿地公园沼泽、林地和农田土壤物理、化学和生物性质的差异,于2018年7月25日~8月2日,在湿地公园内,在天然芦苇(Phragmites australis)沼泽、林地、旱田和水田中设置采样地,采集不同深度(0~10 cm、10~20 cm和20~30 cm)的土壤样品,测定土壤样品的物理、化学和生物指标。研究结果表明,白渔泡国家湿地公园不同采样地土壤指标存在差异;与天然芦苇沼泽土壤相比,其它采样地土壤的含水量明显偏低,土壤全氮、全磷、碱解氮和有机质含量都明显偏小,水田土壤速效磷含量偏大;天然芦苇沼泽土壤脲酶、硝酸还原酶、纤维素酶、蛋白酶和β-葡萄糖苷酶活性都高于林地和农田土壤,水田0~10 cm和10~20 cm深度土壤的硝酸还原酶活性显著高于旱田和林地;与天然芦苇沼泽土壤相比,旱田土壤小于0.25 mm的小团聚体含量偏大,而其它采样地土壤的各粒级团聚体的比例变化较小,水田土壤团聚体平均重量直径比天然芦苇沼泽和旱田土壤低。  相似文献   
5.
本文回顾了自然和自然贡献情景模型发展的背景、历史和内容,概括总结了自然和自然贡献情景模型的发展进程以及联合国生物多样性与生态系统服务政府间科学—政策平台(IPBES)情景模型的概念框架,讨论了自然和自然贡献情景模型存在的问题和发展方向。为了在全球层面解决现有综合集成模型存在的问题,根据地球表层建模基本定理和生态环境曲面建模基本定理,提出了具有中国原创特点的自然与自然贡献情景模型概念框架。  相似文献   
6.
7.
Manzhouli is the largest land port city on the Sino-Russia border, transit cargo through the land port amount-ed to 5.95 million tons, transit tourists were 304 500 in 2000. It stands at the joint place of China, Mongolia and Russi-a, faces to Siberia area of Russia, receives direct support from the Northeast China and Bohai Sea Rim Area, and possess-es priorities in geographical location, land port infrastructure, water resources, coal resources, tourist resources andgreat potentiality in economic cooperation with Russia. The future urban function is a key port on the First Eurasia Continen-tal Bridge. Manzhouli Port will keep its first place between China and Russia land transport, and it is forecasted that thetransit amount through Manzhouli Port will go up to 10 million tons in 2005 and 20 million tons in 2010. It will be construct-ed to be a trade center of the peripheral area extending to Russia and Mongolia, a key export-oriented processing industri-al zone supported by industries such as export processing industries, export agriculture, trade services, technology trad-ing and the other service industries. It keeps being a well-known touring city for trade, shopping, sightseeing, vocation,local food, recreation and cultural events. To build Manzhouli Export Processing Industry Zone will improve city econom-ic structure, and the main sectors are organic food processing, livestock products processing, garment and furniture indus-try. Moreover, Manzhouli Export Processing Industry Zone will eventually be upgraded to be a border free trade zone.The city functional transition will inevitably affect urban spatial restructure and its expansion. The city space transforma-tion will develop as such: one development axis of No. 301 highway paralleling with Bin - Zhou(Harbin - Manzhouli) rail-way which cuts through central part of Manzhouli City, and links Zhalainuocr District with central city; three urban unitsincluding central city, Zhalainuocr District and Manzhouli Interchange Trade Zone; cohesion with Aoerjin and Cuogangpastures; regional dual-nuclei structure of Hailaer City and Manhzouli City; and the Manzhouli-Zabaykalsk Free TradeZone.  相似文献   
8.
The economic development in China and the rising of the living standard need to speed up the urbanisa-tion.The development of small towns is an important way to Chinese urbanization.Land use plays a very important role in the development of small towns.However there are many problems in the development of small towns,esp.in land use.The paper first discusses the land problems in the development of small towns.Such as much cultivated land lies idle,under-utilization and waste of land,increasing illegal use of land,unstable contractural relationship for land use.The relationship between the development of small towns and land use is also studied.Then the guidelines for the land system innovations of small towns are put forward.Namely the sustainability of social and economic development,the bal-ance between land reservation and land utilization,the provision of service to village ,agriculture and farmer,the manage-ment of land resource and land assets,the parsimonious andlegal use of land.The basic framework of land system innova-tions of small towns is put forward finally.It include the land replacement policy for small towns and the permanent tenan-cy of farmland,the overall plan for land uses and other plans in harmony,the establishment of a flexible system of land supplies,using land with payments ,the transfer of agricultural land and refining the land law related to the construction of small towns.  相似文献   
9.
景观生态分类与制图浅议   总被引:12,自引:0,他引:12  
本文在查阅分析大量文献和前人研究的基础上 ,对目前景观生态分类和景观制图作了详细的对比分析 ,认为景观分类需要结合实际区域现状 ,采用逐级分类的方法 ;同时利用 ETM遥感影像为数据源 ,以天山北麓为示范区.研制其土地利用土地覆盖变化的景观类型图。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号