首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   1篇
  国内免费   7篇
测绘学   14篇
大气科学   14篇
地球物理   12篇
地质学   18篇
海洋学   1篇
天文学   4篇
自然地理   17篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   11篇
  2012年   2篇
  2011年   7篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有80条查询结果,搜索用时 31 毫秒
1.
Ambient atmospheric aerosols and savanna fireparticulate emission samples from southern Africa werecharacterised in terms of particle classes and theirnumber abundance by electron probe X-ray microanalysis(EPXMA). About ten particle classes were identifiedfor each sample. The major classes werealuminosilicates and sea salts for ambient coarse(2–10 m equivalent aerodynamic diameter (EAD))samples, and K-S and S-only particles for ambient fine(<2 m EAD) samples. The K-S particles are oneof the major products of biomass burning. The EPXMAresults were found to be consistent with the resultsfrom bulk analyses on a sample by sample basis. Forsavanna fire fine samples, quantitative EPXMA revealedthat many particles had a composition of simple saltssuch as KCl. Some particles had a deviatingcomposition in the sense that more ionic species wereinvolved in sustaining the balance between cations andanions, and they were composite or mixed salts.Because of extensive processing during the atmospherictransport, the composition of the K-S particles in theambient samples was different from K2SO4,and such particles were enriched with S. The finepyrogenic KCl particles and the fine sea-saltparticles were much depleted in chlorine.  相似文献   
2.
河南省近年来遥感监测的森林火灾时空分布规律分析   总被引:2,自引:0,他引:2  
森林火灾作为一种自然灾害,其发生原因不仅来自于自然因素,从众多的火灾调查中发现,更多地来自于人类活动因素,其发生的时空分布特点和规律,受自然和人类活动共同影响.对2003-2008年春、冬季(11月-次年4月)河南省森林防火期内遥感监测并已查明的森林火灾进行统计分析,结果发现:河南省森林火灾近年来有逐年增多的趋势;冬、春之交的3月为森林火灾的高发月份;从火灾的日变化规律来看,12-15时为一天中森林火灾的高发时段;从火灾发生的空间分布来看,伏牛山南麓发生森林火灾的频率较高.  相似文献   
3.
The South-East Asian region experienced a haze episode in 1994 which was widely believed to be due to widespread forest fires in Sumatra and Kalimantan (Indonesia). Broadband measurements of the surface level solar ultraviolet-B, UV-A and Global radiation at Penang (Malaysia) are used to study the effect of the 1994 haze on effective UV-B irradiance. We find that during the haze episode, there is enhanced absorption of surface level UV-B radiation. The effect of haze on UV-A and Global radiation is much less. The reduction in absolute noon time UV-B irradiance (mostly cloud free) during the 1994 haze period was 23% relative to the UV-B irradiance during thecorresponding haze-free period in 1995. Even though the noon time radiation data minimizes the cloud effect in the results presented some cloud effect is still present.  相似文献   
4.
5.
Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO2 and – under certain circumstances – to spontaneous combustion. Coal fires occur in many countries world wide – however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N2O). They additionally contribute to the emission of green house relevant gasses such as CO2 and CH4 to the atmosphere.In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered.Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime. Thus, night-time analysis is the most suitable for thermal anomaly mapping of underground coal fires, although this is not always feasible. The heat of underground coal fires only progresses very slowly through conduction in the rock material. Anomalies of coal fires completely covered by solid unfractured bedrock are very weak and were only measured during the night. The thermal pattern of underground coal fires manifested on the surface during the daytime is thus the pattern of cracks and vents, which occur due to the volume loss underground and which support radiation and convective energy transport of hot gasses. Inside coal fire temperatures can hardly be measured and can only be recorded if the glowing coal is exposed through a wider crack in the overlaying bedrock. Direct coal fire temperatures measured ranged between 233 °C and 854 °C. The results presented can substantially support the planning of thermal mapping campaigns, analyses of coal fire thermal anomalies in remotely sensed data, and can provide initial and boundary conditions for coal fire related numerical modeling.In a second paper named “Thermal Characteristics of Coal Fires 2: results of measurements on simulated coal fires” [Zhang J., Kuenzer C., Tetzlaff A., Oettl D., Zhukov B., Wagner W., 2007. Thermal Characteristics of Coal Fires 2: Result of measurements on simulated coal fires. Accepted for publication at Journal of Applied Geophysics. doi:10.1016/j.jappgeo.2007.08.003] we report about thermal characteristics of simulated coal fires simulated under simplified conditions. The simulated set up allowed us to measure even more parameters under undisturbed conditions — especially inside fire temperatures. Furthermore we could demonstrate the differences between open surface coal fires and covered underground coal fires. Thermal signals of coal fires in near range thermal remotely sensed imagery from an observing tower and from an airplane are presented and discussed.  相似文献   
6.
Responses of herbaceous and suffrutescent species to fire, grazing, and presence of Prosopis glandulosa were examined in a Chihuahuan desert grassland in south-central New Mexico. Treatments were assigned randomly to eight 12×8 m plots within each of two blocks. Following fires in June 1995, unfenced plots were exposed to livestock grazing over 4 years. Plots were established that either included or excluded P. glandulosa. Perennial grass cover, primarilyBouteloua eriopoda , decreased by 13% in burned plots but increased 5% in unburned areas. Conversely, perennial forb cover was 4% greater after fire. Perennial grass frequency decreased 30% more and perennial forb frequency increased 10% more following burning. Further, increases in evenness after fire resulted in a 225% increase in species diversity. Grazing also resulted in a decrease in perennial grass cover while frequency decreased 22% more in grazed than ungrazed plots. Only frequency and not cover of perennial forbs and annual grasses increased more following grazing. Presence of P. glandulosa had no differential effect on responses of non-shrub species. Fires were conducted during near drought conditions while grazing occurred during years of precipitation equivalent to the long-term average. Precipitation immediately following fire may be critical for recovery of B. eriopoda -dominated desert grasslands; relationships between fire and post-fire precipitation patterns require future investigation.  相似文献   
7.
Mt. Qomolangma (also known as Mt. Everest), the world’s highest mountain, is situated over the world’s highest plateau, the Tibetan Plateau. Because of its height and because of its distance from industrialized areas, the environmental state of the Mt. Qomolangma region can normally be considered “undisturbed”. It is interesting to investigate how this “undisturbed” state has been changing with time and whether it has been influenced by large environmentally disruptive events such as the Kuwait oil fires of 1990 and 1991 (Small, 1991). In order to do this, riv-er water samples were collected from the Rongpu River at Rongpu Temple Station in the summers of 1992 and 1993, as was done in 1975, and aerosol samples were collected in the summer of 1992 at the same station as was done in 1980. River water samples were analyzed using atomic absorption spectroscopy (AAS) at the Chinese Academy of Sciences. Aerosol samples were analyzed using proton-induced x-ray emission (PIXE) at the University of Fudan in Shanghai. The results show that the concentrations of chemical species in the river water at Rongpu Temple Station were much higher in the summer of 1992 than they were in 1975 and 1993, and the concentrations of atmospheric chemical species were much higher in 1992 than they were in 1980. The environment of the north slope of Mt. Qomolangma was therefore heavily polluted before and/or during the summer of 1992, possibly due to the Kuwait oil fires in 1990 and 1991.  相似文献   
8.
城乡火险预报模式探讨   总被引:5,自引:0,他引:5       下载免费PDF全文
文章探讨了建立火险预报模式的必要性和可行性,分析了1981~1990年辽宁省火灾次数与风速、月降水量和相对湿度的关系。并从概念模式出发,讨论了与火险有关的逐因子,建立了定量的火险预报模式,试用效果较好。  相似文献   
9.
ABSTRACT

Widespread forest fire events occurred in the foothills of North Western Himalaya during 24 April to 2 May 2016 (Event-1) and 20–30 May 2018 (Event-2). Their impacts were investigated on the distribution of pollutant gases ozone (O3), carbon monoxide (CO), and oxides of nitrogen (NOx) over Uttarakhand using simulations of Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and in-situ observations of these gases over Dehradun, the capital of Uttarakhand. During Event-1, the observed CO mixing ratio over Dehradun increased from 25 April 2016 onwards, attained maximum (705.8 ± 258 ppbv) on 2 May 2016 and subsequently decreased. The rate of increase of daily baseline CO was 29 ppbv/day during HFAP (High Fire Activity Period). During Event-2, daily average concentrations of CO, O3, and NOx showed systematic increase over Dehradun during HFAP period. The rate of increase of CO was 9 ppbv/day, while it was very small for NOx and O3. To quantitatively estimate the influence of forest fire emissions, two WRF-Chem simulations were made: one with biomass burning (BB) emissions and other without BB emissions. These simulations showed 52% (34%) enhancement in CO, 52% (32%) enhancement in NOx, and 11% (9%) enhancement in O3 during HFAP for Event-1 (Event-2). A clear positive correlation (r = 0.89 for Event-1, r = 0.69 for Event-2) was found between ?O3 (O3with BB minus O3without BB) and ?CO (COwith BB minus COwithout BB), indicating rapid production of ozone in the fire plumes. For both the events, the vertical distribution of ?O3, ?CO, and ?NOx showed that forest fire emissions influenced the air quality upto 6.5 km altitude. Peaks in ?O3, ?CO, and ?NOx during different days suggested the role of varying dispersion and horizontal mixing of fire plumes.  相似文献   
10.
Russian boreal forests have been reshaped by wildland fire for millennia. While fire is a natural component of boreal ecosystems, it impacts various aspects of the environment and affects human well-being. Often fires occur over large remote areas with limited access, which makes their ground-based observation difficult. A significant progress has been made in mapping burned area from satellite imagery, which provides consistent and fairly unbiased estimates of fire impact on areas of interest at multiple scales. Although the information provided by burned area products is highly important, the spatio-temporal dynamics of individual fire events and their impact are less known. In high northern latitudes of Northern Eurasia, MODIS (Moderate Resolution Imaging Spectroradiometer) makes up to four daily observations from each of the Terra and Aqua satellites providing consistent data on fire development with high temporal frequency. Here we introduce an approach to reconstruct the development of fire events based on active fire detections from MODIS. Fire Spread Reconstruction (FSR) provides a means for characterization of fire occurrence over large territories from remotely sensed data. Individual fire detections are clustered within a GIS environment based on a set of rules determining proximity between fire observations in space and time. FSR determines the number of fire events, their approximate size, duration, and fire spread rate and allows for the analysis of fire occurrence and spread as a function of vegetation, fire season, fire weather and other parameters. FSR clusters were compared to burned scars mapped from Landsat7/ETM+ imagery over Yakutia (Russia). While some smaller burn scars were found to be formed through a continuous burning of a single fire event, large burned areas in Siberia were created by a constellation of fire events incorporating over 100 individual fire clusters. Geographic regions were found to have a stronger influence on the rates of fire activity in the area compared to vegetation zones. In addition, fire spread rates do not directly correlate with the intensity of a given fire season. FSR is also used to identify the points of ignition for individual fire events in spatio-temporal domain for fire danger and fire threat modeling. This approach presents another step towards the more complete characterization of fire events from remotely sensed data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号