首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   1篇
自然地理   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 171 毫秒
1
1.
2.
—A palaeomagnetic investigation has been carried out at 14 sites on Jurassic red nodular limestones from the central and eastern part of the External Zones of the Betic Cordillera (Subbetic and Prebetic Zones). Progressive thermal demagnetisation of samples from the Subbetic Zone reveals the presence of two stable magnetic components of the natural remanent magnetisation: 1) a secondary Neogene syn-folding component and 2) the original Jurassic magnetisation. As similar characteristics have been reported in Jurassic limestones from the western Subbetic Zone, a widespread remagnetisation event took place within <106 years in the entire Subbetic region during Neogene times. In contrast, in the Prebetic region, no evidence for a secondary overprint has been detected. Palaeomagnetic Jurassic declinations indicate variable and locally very large clockwise rotations (35°–140°), but the two sites in the north-westernmost part of the investigated region are not rotated. The use of both components of magnetisation and the incremental fold-test results allowed the timing of block rotations in the Subbetic Zone to be constrained. Rotations in the western Subbetic occurred after the acquisition of the secondary overprint, whereas in the central part of the Subbetic Zone they were completed by the time of the remagnetisation event.  相似文献   
3.
Since the pioneering studies of Van der Voo [Tectonophysics 7 (1969) 5] and Van der Voo and Boessenkool [J. Geophys. Res. 78 (1973) 5118], paleomagnetism of Permo-Triassic redbeds and volcanics from the Western Pyrenees has furnished important contributions for delineating the Mesozoic boundary between the Iberian and Eurasian plates. In this paper, we present a new paleomagnetic study focussed on Triassic red beds (23 sites) of the Paleozoic Basque Massifs (PBM). The aim of this study is to complement previous studies done in those massifs to better constrain the complex kinematics of the Western Pyrenees. Two stable magnetic components have been isolated: (1) a dual polarity, pre-folding magnetisation carried by specular hematite; and (2) a secondary, normal polarity component also carried by hematite. Our data confirm both the origin and the rotation pattern of the primary remanence described in previous works. Nevertheless, field tests performed on the secondary component do not confirm the earlier interpretations by Schott and Peres [Tectonophysics 156 (1988) 75] as they indicate a synfolding nature of the remagnetisation instead of a post-folding origin. We consider that the secondary component is better explained if a Cretaceous age is considered. The presence of such remagnetisation in the western Pyrenees strengthens the widespread occurrence of similar remagnetisation events reported in northern Iberia in connection with the extensional tectonic events that occurred during Cretaceous times. A comparison of the rotations recorded by the Triassic component and by the remagnetisation indicate that the Paleozoic units underwent variable tectonic rotations before the remagnetisation was acquired, most likely in connection with the counterclockwise rotation of Iberia with respect to Eurasia. These results favour that the Mesozoic plate boundary between the Iberian and Eurasian plates was a wide domain of distributed deformation and therefore contradict previous interpretations claiming for a discrete plate boundary.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号