首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1663篇
  免费   243篇
  国内免费   337篇
测绘学   33篇
大气科学   77篇
地球物理   364篇
地质学   618篇
海洋学   599篇
天文学   2篇
综合类   132篇
自然地理   418篇
  2024年   9篇
  2023年   31篇
  2022年   42篇
  2021年   64篇
  2020年   70篇
  2019年   71篇
  2018年   65篇
  2017年   61篇
  2016年   71篇
  2015年   66篇
  2014年   98篇
  2013年   117篇
  2012年   96篇
  2011年   117篇
  2010年   89篇
  2009年   115篇
  2008年   91篇
  2007年   115篇
  2006年   131篇
  2005年   85篇
  2004年   72篇
  2003年   66篇
  2002年   67篇
  2001年   54篇
  2000年   54篇
  1999年   50篇
  1998年   39篇
  1997年   45篇
  1996年   30篇
  1995年   21篇
  1994年   25篇
  1993年   27篇
  1992年   21篇
  1991年   17篇
  1990年   7篇
  1989年   7篇
  1988年   9篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   8篇
  1982年   3篇
  1981年   3篇
  1971年   1篇
排序方式: 共有2243条查询结果,搜索用时 15 毫秒
1.
A complex of channels underlying the Baginton-Lillington Gravel (Baginton Formation) at Waverley Wood Quarry, Warwickshire is described. Fossil pollen and plant macrofossils, Coleoptera, Ostracoda, Mollusca and Mammalia are described from the channel-fill deposits. Consideration of all the evidence allows the identification of four separate stages of channel fill which largely occurred under a cool temperate climate. At the top of Channel 2 evidence for a cold, continental climatic episode can be recognised, suggesting that the whole complex was deposited under a fluctuating climate at the end of a temperate stage. At two levels in the channels human artefacts were recovered confirming the presence of Palaeolithic people in Warwickshire during the deposition of the sediments. Amino-acid geochronology suggests an age within the ‘Cromerian Complex’ Stage for the channels. The small vertebrate and molluscan faunas indicate that the deposits are no older than the latter part of the ‘Cromerian Complex’ Stage of East Anglia. The regional stratigraphic significance of the Waverley Wood succession is outlined.  相似文献   
2.
The influence of emergent and submerged macrophytes on flow velocity and turbulence production is demonstrated in a 140 m reach of the River Blackwater in Farnborough, Hampshire, UK. Macrophyte growth occurs in patches and is dominated by Sparganium erectum and Sparganium emersum. In May 2001, patches of S. erectum were already established and occupied 18% of the channel area. The flow adjusted to these (predominantly lateral) patches by being channelled through a narrower cross‐section. The measured velocity profiles showed a logarithmic form, with deviations attributable to topographic control. The channel bed was the main source of turbulence. In September 2001, in‐stream macrophytes occupied 27% of the channel, and overhanging bank vegetation affected 32% of the area. Overall flow resistance, described by Manning's n, showed a threefold increase that could be attributed to the growth of S. emersum in the middle of the channel. Velocity profiles showed different characteristic forms depending on their position relative to plant stems and leaves. The overall velocity field had a three‐dimensional structure. Turbulence intensities were generally higher and turbulence profiles tended to mirror the velocity profiles. Evidence for the generation of coherent eddies was provided by ratios of the root mean square velocities. Spectral analysis identified deviations from the Kolmogorov ?5/3 power law and provided statistical evidence for a spectral short‐cut, indicative of additional turbulence production. This was most marked for the submerged vegetation and, in some instances, the overhanging bank vegetation. The long strap‐like leaves of S. emersum being aligned approximately parallel to the flow and the highly variable velocity field created by the patch arrangement of macrophytes suggest that the dominant mechanism for turbulence production is vortex shedding along shear zones. Wake production around individual stems of S. emersum close to the bed may also be important locally. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
3.
Peptidoglycan (PG) is a biopolymer found exclusively in the cell wall of bacteria. Recent chemical analysis of particulate organic matter suggests that a major amount of the muramic acid, an amino sugar present only in PG, could not be accounted for in terms of bacterial cells (Benner and Kaiser, 2003); however, data on particulate PG is quite sparse. In the present study, conducted in 1996, the PG was examined at 5 sampling sites in the northwestern Pacific Ocean, and in natural seawater cultures. Particulate PG, which was concentrated using a 96-well filtration plate equipped with Durapore filters (pore size, 0.22 μm), was measured by the silkworm larvae plasma (SLP) assay. The PG concentration generally decreased with depth and correlated significantly with bacterial abundance throughout the entire water column. However, the ratio of particulate PG to bacterial abundance varied with depth. The average ratio was 0.61 ± 0.53 (average ± SD, n = 40) between 50 and 2000 m, which agreed with the bacterial cellular PG content from 0.63 to 1.1 fg cell−1 obtained in seawater cultures. On the other hand, the ratios of PG to bacteria from the surface to 50 m (3.7 ± 2.6, n = 29) and below 2,000 m (2.1 ± 1.7, n = 7) were significantly higher than that between 50 and 2,000 m. These results may suggest that, in the surface and deep layers, a significant fraction of particulate PG was present in bacterial detritus, whereas this fraction was reduced in the middle layer.  相似文献   
4.
阐述把维生素B12生产菌添加到培养水中培养褶皱臂尾轮虫BrachionusPlicatilis的买验。共18株细菌分离于轮虫培养池,其中,有一株产维生素B12的假单胞杆菌TP4对轮虫的生长繁殖有明显的促进作用。把TP4菌株培养后,加入到2L的烧杯和500L的水槽中培养泰国S型轮虫时.在9d(天)和6d(天)中,轮虫密度从124~139和242~288个体/ml增殖到4,417~5,540和1,017~1,254个体/ml,分别比对照组增加了4~6及2~3倍。  相似文献   
5.
The summer distributions of planktonic microbial communities (heterotrophic and phtosynthetic bacteria, phtosynthetic and heterotrophic nanoflagellates, ciliate plankton, and microphytoplankton) were compared between inner and outer areas of Lake Sihwa, divided by an artificial breakwater, located on the western coast of Korea, in September 2003. The semienclosed, inner area was characterized by hyposaline surface water (<17 psu), and by low concentrations of dissolved oxygen (avg. 0.4 mg L1) and high concentrations of inorganic nutrients (nitrogenous nutrients >36 μM, phosphate <4 μM) in the bottom layer. Higher densities of heterotrophic bacteria and nanoflagellates also occurred in the inner area than did in the outer area, while microphytoplankton (mainly diatoms) occurred abundantly in the outer area. A tiny tintinnid ciliate, Tintinnopsis nana, bloomed into more than 106 cells L1 at the surface layer of the inner area, while its abundance was much lower (103-104 cells L1) in the outer area of the breakwater. Ciliate abundance was highly correlated with heterotrophic bacteria (r = 0.886, p < 0.001) and heterotrophic flagellates (r = 0.962, p < 0.001), indicating that rich food availability may have led to theT. nana bloom. These results suggest that the breakwater causes the eutrophic environment in artificial lakes with limited flushing of enriched water and develops into abundant bacteria, nanoflagellates, and ciliates.  相似文献   
6.
海桑属红树植物遗传多样性和引种关系研究   总被引:8,自引:2,他引:8  
周涵韬  林鹏 《海洋学报》2002,24(5):98-106
以海南东寨港红树林自然保护区内无瓣海桑(Sonneratia apetala)、海南海桑(S.hainanensis)、拟海桑(S.paracaseolaris)、杯萼海桑(S.abla)、大叶海桑(S.ovata)、海桑(S.caseolaris)等6种海桑属红树植物为材料,对15个有效引物进行RAPD分析,共扩增出512条带,其中多态性条带为297,占总扩增条带的58.01%.Nei指数法分析和UPGMA统计分析表明,6种海桑属红树植物分为A,B,C3个组,平均遗传距离为0.38.A组包括无瓣海桑、海南海桑、大叶海桑、怀萼海桑,其中无瓣海桑、海南海桑、大叶海桑处于同一个亚组.B组包括拟海桑.C组包括海桑.对海南和福建无瓣海桑种群进行RAPD分析.对Shannon表型多样性指数统计结果表明,福建种群为0.669,海南种群为0.671,各种群遗传变异较大,这与无瓣海桑种群广泛的适应性相一致.对种群间的Shannon表型多样性指数分析表明,种群内的遗传变异占整个遗传变异的93.3%,而种群间的遗传变异仅占6.7%.这表明无瓣海桑种群的大部分遗传变异存在于种群内,而种群间的遗传变异较小.由此可见,无瓣海桑基因组丰富的多样性,是使其由海南成功引种到福建的重要因素.  相似文献   
7.
To verify the hypothesis that the growth of phytoplankton in the Western Subarctic Gyre (WSG), which is located in the northwest subarctic Pacific, is suppressed by low iron (Fe) availability, an in situ Fe fertilization experiment was carried out in the summer of 2001. Changes over time in the abundance and community structure of phytoplankton were examined inside and outside an Fe patch using phytoplankton pigment markers analyzed by high-performance liquid chromatography (HPLC) and flow cytometry (FCM). In addition, the abundance of heterotrophic bacteria was also investigated by FCM. The chlorophyll a concentration was initially ca. 0.9 μg l−1 in the surface mixed layer where diatoms and chlorophyll b-containing green algae (prasinophytes and chlorophytes) were predominant in the chlorophyll biomass. After the iron enrichment, the chlorophyll a concentration increased up to 9.1 μg l−1 in the upper 10 m inside the Fe patch on Day 13. At the same time, the concentration of fucoxanthin (a diatom marker) increased 45-fold in the Fe patch, and diatoms accounted for a maximum 69% of the chlorophyll biomass. This result was consistent with a microscopic observation showing that the diatom Chaetoceros debilis had bloomed inside the Fe patch. However, chlorophyllide a concentrations also increased in the Fe patch with time, and reached a maximum of 2.2 μg l−1 at 5 m depth on Day 13, suggesting that a marked abundance of senescent algal cells existed at the end of the experiment. The concentration of peridinin (a dinoflagellate marker) also reached a maximum 24-fold, and dinoflagellates had contributed significantly (>15%) to the chlorophyll biomass inside the Fe patch by the end of the experiment. Concentrations of 19′-hexanoyloxyfucoxanthin (a prymnesiophyte marker), 19′-butanoyloxyfucoxanthin (a pelagophyte marker), and alloxanthin (a cryptophyte marker) were only incremented a few-fold increment inside the Fe patch. On the contrary, chlorophyll b concentration reduced to almost half of the initial level in the upper 10 m water column inside the Fe patch at the end of the experiment. A decrease with time in the abundance of eukaryotic ultraphytoplankton (<ca. 5 μm in size), in which chlorophyll b-containing green algae were possibly included was also observed by FCM. Overall, our results indicate that Fe supply can dramatically alter the abundance and community structure of phytoplankton in the WSG. On the other hand, cell density of heterotrophic bacteria inside the Fe patch was maximum at only ca. 1.5-fold higher than that outside the Fe patch. This indicates that heterotrophic bacteria abundance was little respondent to the Fe enrichment.  相似文献   
8.
Abstract. Vacated microborings in periostracum of live mussels of the Florida Escarpment redox community (depth of 3266 m) become a habitat for a prolific secondary microbiota consisting of a variety of prokaryotic and a few eukaryotic organisms. Periostracum surface is also colonized by diverse microorganisms, dominated by presumed chemolithotrophic bacteria with stacks of intracellular lamellae. Unlike sheltered microflora within borings, the surface community is heavily grazed upon by numerous archaeogastropods and ciliates.  相似文献   
9.
Abstract. The marine plant communities of the littoral zone in different biotopes of the Greek coasts were investigated in 1980-81. Seasonal distribution and variation of marine plant biomass were assessed. The communities of Cystoseira crinita and C. compressa were outstanding with maximum biomass during the summer months. Corallina officinalis and Pterocladia capillacea + Viva rigida communities predominated with maximum biomass in autumn and exhibited a decrease in winter, except in stressed biotopes. The species diversity and productivity of seaweeds along the Greek coasts are interpreted in relation to a number of environmental parameters.  相似文献   
10.
Deep-sea benthic ecosystems are sustained largely by organic matter settling from the euphotic zone. These fluxes usually have a more or less well-defined seasonal component, often with two peaks, one in spring/early summer, the other later in the year. Long time-series datasets suggest that inter-annual variability in the intensity, timing and composition of flux maxima is normal. The settling material may form a deposit of “phytodetritus” on the deep-seafloor. These deposits, which are most common in temperate and high latitude regions, particularly the North Atlantic, evoke a response by the benthic biota. Much of our knowledge of these responses comes from a few time-series programmes, which suggest that the nature of the response varies in different oceanographic settings. In particular, there are contrasts between seasonal processes in oligotrophic, central oceanic areas and those along eutrophic continental margins. In the former, it is mainly “small organisms” (bacteria and protozoans) that respond to pulsed inputs. Initial responses are biochemical (e.g. secretion of bacterial exoenzymes) and any biomass increases are time lagged. Increased metabolic activity of small organisms probably leads to seasonal fluctuations in sediment community oxygen consumption, reported mainly in the North Pacific. Metazoan meiofauna are generally less responsive than protozoans (foraminifera), although seasonal increases in abundance and body size have been reported. Measurable population responses by macrofauna and megafauna are less common and confined largely to continental margins. In addition, seasonally synchronised reproduction and larval settlement occur in some larger animals, again mainly in continental margin settings. Although seasonal benthic responses to pulsed food inputs are apparently widespread on the ocean floor, they are not ubiquitous. Most deep-sea species are not seasonal breeders and there are probably large areas, particularly at abyssal depths, where biological process rates are fairly uniform over time. As with other aspects of deep-sea ecology, temporal processes cannot be encapsulated by a single paradigm. Further long time-series studies are needed to understand better the nature and extent of seasonality in deep-sea benthic ecosystems. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号