首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   10篇
  国内免费   1篇
测绘学   3篇
大气科学   2篇
地球物理   24篇
地质学   4篇
海洋学   1篇
综合类   3篇
自然地理   6篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   1篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  1997年   1篇
  1986年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
The confounding effects of step change invalidate the stationarity assumption of commonly used trend analysis methods such as the Mann–Kendall test technique, so previous studies have failed to explain inconsistencies between detected trends and observed large precipitation anomalies. The objectives of this study were to (1) formulate a trend analysis approach that considers nonstationarity due to step changes, (2) use this approach to detect trends and extreme occurrences of precipitation in a mid‐latitude Eurasian steppe watershed in North China, and (3) examine how runoff responds to precipitation trends in the study watershed. Our results indicate that annual precipitation underwent a marginal step jump around 1995. The significant annual downward trend after 1994 was primarily due to a decrease in summer rainfall; other seasons exhibited no significant precipitation trends. At a monthly scale, July rainfall after 1994 exhibited a significant downward trend, whereas precipitation in other months had no trend. The percentage of wet days also underwent a step jump around 1994 following a significant decreasing trend, although the precipitation intensity exhibited neither a step change nor any significant trend. However, both low‐frequency and high‐frequency precipitation events in the study watershed occurred more often after than before 1994; probably as either a result or an indicator of climate change. In response to these precipitation changes, the study watershed had distinctly different precipitation‐runoff relationships for observed annual precipitations of less than 300 mm, between 300 and 400 mm, and greater than 400 mm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
2.
The most popular practice for analysing nonstationarity of flood series is to use a fixed single‐type probability distribution incorporated with the time‐varying moments. However, the type of probability distribution could be both complex because of distinct flood populations and time‐varying under changing environments. To allow the investigation of this complex nature, the time‐varying two‐component mixture distributions (TTMD) method is proposed in this study by considering the time variations of not only the moments of its component distributions but also the weighting coefficients. Having identified the existence of mixed flood populations based on circular statistics, the proposed TTMD was applied to model the annual maximum flood series of two stations in the Weihe River basin, with the model parameters calibrated by the meta‐heuristic maximum likelihood method. The performance of TTMD was evaluated by different diagnostic plots and indexes and compared with stationary single‐type distributions, stationary mixture distributions and time‐varying single‐type distributions. The results highlighted the advantages of TTMD with physically‐based covariates for both stations. Besides, the optimal TTMD models were considered to be capable of settling the issue of nonstationarity and capturing the mixed flood populations satisfactorily. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
3.
新型随机地震动模型   总被引:2,自引:0,他引:2  
在研究结构的随机地震反应时,要用大量的符合场地条件的地震记录作为输入数据。但强震历史记录却不是每个地区都有的,因此根据符合场地条件的现有地震记录建立随机地震动模型具有重要意义。本文利用中国抗震规范2001版修正选取的样本波作为目标波,考虑了幅值和频率的双重非平稳性,建立了新型随机地震动模型——改进的时变ARMA模型随机地震动模型。通过使用残差的卡方检验法,对多种非平稳ARMA模型生成的模拟波进行检验;同时又比较丁模拟波与目标波的功率谱密度图和反应谱图。结果证明:此法能够更精确地反映不同场地条件地震动的频谱和幅值的真实内容,从而建立符合目标场地条件的更为有效的模拟地震动,为相关研究与工程设计架起一座桥梁。  相似文献   
4.
This paper proposes a new approach which we refer to as ``segregated prediction" to predict climate time series which are nonstationary. This approach is based on the empirical mode decomposition method (EMD), which can decompose a time signal into a finite and usually small number of basic oscillatory components. To test the capabilities of this approach, some prediction experiments are carried out for several climate time series. The experimental results show that this approach can decompose the nonstationarity of the climate time series and segregate nonlinear interactions between the different mode components, which thereby is able to improve prediction accuracy of these original climate time series.  相似文献   
5.
变化环境对城市暴雨及排水系统影响研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
近年来,变化环境(气候变化和城镇化)导致城市暴雨的发生频率或强度增加,加剧了城市暴雨洪涝问题。因此,分析变化环境对城市暴雨及排水系统的影响对城市水资源规划管理、市政规划设计和城市防灾减灾有着重要意义。总结了未来高精度降雨预估技术、变化环境下排水系统设计标准等关键问题的研究进展,综述了变化环境下城市短历时暴雨演变规律及变化环境对城市排水系统影响的研究现状,探讨了变化环境对城市短历时暴雨的影响机理,并归纳了当前研究变化环境对城市暴雨及排水系统影响的主要方法。指出今后应重点加强的研究:①加强气候变化和城镇化对城市短历时暴雨影响机制的研究;②提升区域气候模式对城市区域下垫面和大气相互作用的描述能力,并加强公里尺度对流可解析模型在城市气候变化影响研究中的应用;③加强对变化环境下排水系统设计标准的研究;④综合评估气候变化和城镇化对城市排水系统超载、污染物转移和水安全等的影响。  相似文献   
6.
Forecasting of hydrologic time series, with the quantification of uncertainty, is an important tool for adaptive water resources management. Nonstationarity, caused by climate forcing and other factors, such as change in physical properties of catchment (urbanization, vegetation change, etc.), makes the forecasting task too difficult to model by traditional Box–Jenkins approaches. In this paper, the potential of the Bayesian dynamic modelling approach is investigated through an application to forecast a nonstationary hydroclimatic time series using relevant climate index information. The target is the time series of the volume of Devil's Lake, located in North Dakota, USA, for which it was proved difficult to forecast and quantify the associated uncertainty by traditional methods. Two different Bayesian dynamic modelling approaches are discussed, namely, a constant model and a dynamic regression model (DRM). The constant model uses the information of past observed values of the same time series, whereas the DRM utilizes the information from a causal time series as an exogenous input. Noting that the North Atlantic Oscillation (NAO) index appears to co‐vary with the time series of Devil's Lake annual volume, its use as an exogenous predictor is explored in the case study. The results of both the Bayesian dynamic models are compared with those from the traditional Box–Jenkins time series modelling approach. Although, in this particular case study, it is observed that the DRM performs marginally better than traditional models, the major strength of Bayesian dynamic models lies in the quantification of prediction uncertainty, which is of great value in hydrology, particularly under the recent climate change scenario. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
7.
基于相位差谱的时-频非平稳人造地震动的反应谱拟合   总被引:16,自引:2,他引:16  
本文根据相位差谱对地震动时程非平稳性的影响,反应谱、功率谱和傅里叶幅值谱间的数学关系以及加速度时程单谐波分量对反应谐拟合精度和拟合效率的作用,提出了一种可直接拟合目标反应谱的具有时-频非平稳性的人工地震动的高效方法,算例说明了其有效性。  相似文献   
8.
Many studies have analysed the nonstationarity in single hydrological variables due to changing environments. Yet, few researches have been done to investigate how the dependence structure between different individual hydrological variables is affected by changing environments. To investigate how the reservoirs have altered the dependence structure between river flows at different locations on the Hanjiang River, a time‐varying copula model, which takes the nonstationarity in the marginal distribution and/or the time variation in dependence structure between different hydrological series into consideration, is presented in this paper to perform a bivariate frequency analysis for the low‐flow series from two neighbouring hydrological gauges. The time‐varying moments model with either time or reservoir index as explanatory variables is applied to build the time‐varying marginal distributions of the two low‐flow series. It's found that both marginal distributions are nonstationary, and the reservoir index yields better performance than the time index in describing the nonstationarities in the marginal distributions. Then, the copula with the dependence parameter expressed as a function of either time or reservoir index is applied to model the variable dependence between the two low‐flow series. The copula with reservoir index as the explanatory variable of the dependence parameter has a better fitting performance than the copula with the constant or the time‐trend dependence parameter. Finally, the effect of the time variation in the joint distribution on three different types of joint return periods (i.e. AND, OR and Kendall) of low flows at two neighbouring hydrological gauges is presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
By incorporating temporal effects into the geographically weighted regression (GWR) model, an extended GWR model, geographically and temporally weighted regression (GTWR), has been developed to deal with both spatial and temporal nonstationarity simultaneously in real estate market data. Unlike the standard GWR model, GTWR integrates both temporal and spatial information in the weighting matrices to capture spatial and temporal heterogeneity. The GTWR design embodies a local weighting scheme wherein GWR and temporally weighted regression (TWR) become special cases of GTWR. In order to test its improved performance, GTWR was compared with global ordinary least squares, TWR, and GWR in terms of goodness-of-fit and other statistical measures using a case study of residential housing sales in the city of Calgary, Canada, from 2002 to 2004. The results showed that there were substantial benefits in modeling both spatial and temporal nonstationarity simultaneously. In the test sample, the TWR, GWR, and GTWR models, respectively, reduced absolute errors by 3.5%, 31.5%, and 46.4% relative to a global ordinary least squares model. More impressively, the GTWR model demonstrated a better goodness-of-fit (0.9282) than the TWR model (0.7794) and the GWR model (0.8897). McNamara's test supported the hypothesis that the improvements made by GTWR over the TWR and GWR models are statistically significant for the sample data.  相似文献   
10.
非稳态地震稀疏约束反褶积研究(英文)   总被引:1,自引:1,他引:0  
传统Robinson褶积模型主要受缚于三种不合理的假设,即白噪反射系数、最小相位地震子波与稳态假设,而现代反射系数反演方法(如稀疏约束反褶积等)均在前两个假设上寻求突破的同时却忽视了一个重要事实:实际地震信号具有典型的非稳态特征,这直接冲击着反射系数反演中地震子波不随时间变化的这一基础性假设。本文首先通过实际反射系数测试证实,非稳态效应造成重要信息无法得到有效展现,且对深层影响尤为严重。为校正非稳态影响,本文从描述非稳态方面具有普适性的非稳态褶积模型出发,借助对数域的衰减曲线指导检测非稳态影响并以此实现对非稳态均衡与校正。与常规不同,本文利用对数域Gabor反褶积仅移除非稳态影响,而将分离震源子波和反射系数的任务交给具有更符合实际条件的稀疏约束反褶积处理,因此结合两种反褶积技术即可有效解决非稳态特征影响,又能避免反射系数和地震子波理想化假设的不利影响。海上地震资料的应用实际表明,校正非稳态影响有助于恢复更丰富的反射系数信息,使得与地质沉积和构造相关的细节特征得到更加清晰的展现。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号