首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2167篇
  免费   460篇
  国内免费   638篇
测绘学   152篇
大气科学   709篇
地球物理   700篇
地质学   856篇
海洋学   125篇
天文学   183篇
综合类   91篇
自然地理   449篇
  2024年   17篇
  2023年   24篇
  2022年   79篇
  2021年   107篇
  2020年   106篇
  2019年   115篇
  2018年   100篇
  2017年   118篇
  2016年   144篇
  2015年   150篇
  2014年   148篇
  2013年   203篇
  2012年   152篇
  2011年   119篇
  2010年   109篇
  2009年   130篇
  2008年   140篇
  2007年   175篇
  2006年   128篇
  2005年   130篇
  2004年   115篇
  2003年   100篇
  2002年   93篇
  2001年   62篇
  2000年   65篇
  1999年   47篇
  1998年   59篇
  1997年   51篇
  1996年   52篇
  1995年   36篇
  1994年   35篇
  1993年   23篇
  1992年   28篇
  1991年   18篇
  1990年   18篇
  1989年   11篇
  1988年   10篇
  1987年   11篇
  1986年   7篇
  1985年   7篇
  1984年   6篇
  1983年   1篇
  1982年   6篇
  1981年   3篇
  1979年   1篇
  1978年   5篇
  1954年   1篇
排序方式: 共有3265条查询结果,搜索用时 296 毫秒
1.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
2.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
3.
After the survey of pollution sources, a study on surface water quality assessment and forecast is given by means of grey system method, fuzzy mathematical method and multiple-index method. Based on it, aquatic environment quality features, treatment measures and environmental strategies of the area are proposed. The quality of aquatic environment of 5 rivers in the Tumen River area is studied. The results show that the pollution of surface water is serious; water quality of most rivers is between grade IV and V except the Hunchun River, being higher than grade IV standard; pollution levels of most rivers have been basically controlled except the of Burhatong River, which is deteriorating gradually. Pollutants of the rivers are comparatively regular, mainly are SS, COD, BOD, AR-OH, NH3-N. The main pollution trades are chemical fibre industry, pulp and paper making industry and mining industry. If the growth rate of gross industrial product is higher than 25 percent under the encouraging-model of regional exploitation, the pollutants’ load will overtake the bearing capacity of aquatic environment. Thus some protection program against pollution must be worked out in order to achieve the harmonious development of economy society and environment. A project from “Studies on Earlier Stage of Regional Development” of the Chinese Academy of Sciences  相似文献   
4.
Images from satellite platforms are a valid aid in order to obtain distributed information about hydrological surface states and parameters needed in calibration and validation of the water balance and flood forecasting. Remotely sensed data are easily available on large areas and with a frequency compatible with land cover changes. In this paper, remotely sensed images from different types of sensor have been utilized as a support to the calibration of the distributed hydrological model MOBIDIC, currently used in the experimental system of flood forecasting of the Arno River Basin Authority. Six radar images from ERS‐2 synthetic aperture radar (SAR) sensors (three for summer 2002 and three for spring–summer 2003) have been utilized and a relationship between soil saturation indexes and backscatter coefficient from SAR images has been investigated. Analysis has been performed only on pixels with meagre or no vegetation cover, in order to legitimize the assumption that water content of the soil is the main variable that influences the backscatter coefficient. Such pixels have been obtained by considering vegetation indexes (NDVI) and land cover maps produced by optical sensors (Landsat‐ETM). In order to calibrate the soil moisture model based on information provided by SAR images, an optimization algorithm has been utilized to minimize the regression error between saturation indexes from model and SAR data and error between measured and modelled discharge flows. Utilizing this procedure, model parameters that rule soil moisture fluxes have been calibrated, obtaining not only a good match with remotely sensed data, but also an enhancement of model performance in flow prediction with respect to a previous calibration with river discharge data only. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
5.
This paper proposes a multi‐level parallelized substructuring–frontal combined algorithm for the analysis of the problem of thermo/hydraulic/mechanical behaviour of unsaturated soil. Temperature, displacement, pore water pressure and pore air pressure are treated as the primary variables in a non‐linear analysis. Details are given firstly of the substructuring–frontal combined approach. The incorporation of the algorithm in a multi‐level parallel strategy is then discussed. The parallel processing can thus be carried out at different substructural levels. The method thus developed impacts, in a positive way, on both computer storage requirement and execution time. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
6.
We explore the possibility of searching for groups of radio sources from the FIRST catalog on angular scales 1′–5′. We developed an efficient method of searching for such groups that takes into account the need for combining the components of extended sources represented in the catalog by separate objects. We found 31 groups of radio sources with angular sizes <5′ that contain no fewer than five sources with flux densities ≥3 mJy. This number is at least triple the expected number of such groups for a random Poisson distribution of radio sources in the sky. The prospects for using groups of radio sources to detect and study distant systems of galaxies are discussed.  相似文献   
7.
We present the results of our analysis of the RXTE observations for two transient sources, IGR J17091-3624 and IGR J18539+0727, in April 2003. The derived energy spectra of the sources and the power-density spectra of their light curves make it possible to classify them as low/hard-state X-ray binaries. The parameters of the power spectrum for IGR J18539+0727 lead us to tentatively conclude that the compact object in this binary is a black hole.  相似文献   
8.
Wang Yanhui 《水文研究》1992,6(2):241-251
Black locust (Robina pseudoacacia) has become one of the most important shelter species in the loess area of northwest China. This paper summarizes recent research concerning its hydrological influence, including canopy interception, litter absorption capacity, its effect on rainfall kinetic energy, infiltration rates, surface runoff, soil moisture, and evapotranspiration, and its role in soil conservation. Several predictive models are listed. on the basis of existing results, optimum characteristics for an effective plantation are defined, and problems requiring further research are identified.  相似文献   
9.
Spectral measurement of Mkn 421 were made in the hard X-ray energy band of 20–200 keV using a high sensitivity, large area scintillation counter telescope on November 21, 2000 and these coincided with the onset of an active X-ray phase as seen in the ASM counting rates on board RXTE. The observed spectrum can not be fitted to a single power law similar to the PDS data of BeppoSAX. The data can be fitted both by a two component power-law function or a combination of an exponential function with a power law component at the high energies above 80 keV. We identify these components with those arising from the synchrotron self compton and the high energy power-law tail arising from the upgrading of the thermal photons due to multiple Compton scattering a la Cyg X-1. A comparison with the earlier data clearly suggests a spectral variability in the hard X-ray spectrum of the source. We propose a continuously flaring geometry for the source as the underlying mechanism for energy release.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号