首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   2篇
自然地理   1篇
  2010年   1篇
  2009年   1篇
  1995年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
2.
Most studies on runoff and soil loss from olive orchards were performed on plots, despite the fact that measurements that examine a range of erosive processes on different scales are essential to evaluate the suitability of the use and soil management of this type of land. The main environmental limitations of much of the land used for olive orchards in the Mediterranean are the steep slopes and the shallow soil depth – and this was the case in the study area. Soil erosion and runoff over two hydrological years (2005–2006 and 2006–2007) were monitored in an olive orchard microcatchment of 6·1 ha under no‐tillage with spontaneous grass in order to evaluate its hydrological and erosive behaviour. Moreover, soil parameters such as organic matter (%OM), bulk density (BD) and hydraulic saturated conductivity (Ks) were also examined in the microcatchment to describe management effects on hydrological balance and on erosive processes. In the study period, the results showed runoff coefficients of 6·0% in the first year and 0·9% in the second. The differences respond to the impact of two or three yearly maximum events which were decisive in the annual balances. On the event scale, although maximum rainfall intensity values had a big influence on peak flows and runoff, its importance on mean sediment concentrations and sediment discharges was difficult to interpret due to the likely control of grass cover on volume runoff and on soil protection. In the case of annual soil erosion, they were measured as 1·0 Mg ha?1 yr?1 and 0·3 Mg ha?1 yr?1. Both are lower than the tolerance values evaluated in Andalusia (Spain). These results support the implementation of no‐tillage with spontaneous grass cover for sloping land, although the reduced infiltration conditions determined by Ks in the first horizon suggest grass should be allowed to grow not only in spring but also in autumn. In addition, specific measurements to control gullies, which have formed in the terraced area in the catchment, should be included since it is expected that they could be the main sources of sediments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
3.
Despite the high risk of erosion in olive orchards located in mountainous areas in Spain, little research has been carried out to account for the complexity and interaction of the natural processes of runoff and soil erosion on the catchment scale or small catchment scale. In this study, a microcatchment of 6·7 ha in a mountainous area under no‐tillage farming with bare soil was set up to record runoff and sediment. Soil erosion and runoff patterns were monitored over a two‐year period. Totally, 22 events were observed. The data were analysed, and then used to calibrate the AnnAGNPS model, which allowed us to complete the data period and describe the hydrological and erosive behaviour on a monthly and annual basis. A high variability in catchment responses was observed, due to differences in the storms and to the effect of the surface soil moisture content. Maximum intensities of 10 and 30 min determined the final runoff values while the total sediment loads were dependent on the rainfall depth. The impact of management on the reduction of porosity can explain the relationship between runoff and intensity in the microcatchment. However, the impact of the spatial scale meant that the transport of sediment required substantial rainfall depths to ensure a continuous flow from the hillslopes. The results of the calibration (>0·60 and >0·75) on the event and monthly scale confirmed the applicability of AnnAGNPS to predict runoff and erosion in the microcatchment. The predicted average runoff coefficient was 3·3% for the study period and the total average sediment loads, 1·3 Mg/ha/yr. Despite these low values, the model simulation showed that much larger runoff coefficients and soil losses can be expected for periods with several consecutive years in which the annual rainfall depth was over 500 mm. The use of cover is recommended to prevent the high levels of erosion associated with these conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号