首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7603篇
  免费   1182篇
  国内免费   2093篇
测绘学   193篇
大气科学   246篇
地球物理   1752篇
地质学   5315篇
海洋学   1230篇
天文学   1455篇
综合类   264篇
自然地理   423篇
  2024年   35篇
  2023年   87篇
  2022年   171篇
  2021年   212篇
  2020年   243篇
  2019年   343篇
  2018年   263篇
  2017年   289篇
  2016年   295篇
  2015年   349篇
  2014年   410篇
  2013年   357篇
  2012年   390篇
  2011年   450篇
  2010年   372篇
  2009年   589篇
  2008年   578篇
  2007年   624篇
  2006年   670篇
  2005年   492篇
  2004年   520篇
  2003年   427篇
  2002年   376篇
  2001年   363篇
  2000年   325篇
  1999年   310篇
  1998年   290篇
  1997年   185篇
  1996年   156篇
  1995年   133篇
  1994年   134篇
  1993年   81篇
  1992年   76篇
  1991年   49篇
  1990年   47篇
  1989年   43篇
  1988年   34篇
  1987年   27篇
  1986年   12篇
  1985年   23篇
  1984年   20篇
  1983年   7篇
  1982年   6篇
  1981年   6篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 562 毫秒
1.
Difficulties are involved in discrete element method (DEM) modelling of the flexible boundary, that is, the membranes covering the soil sample, which can be commonly found in contemporary laboratory soil tests. In this paper, a novel method is proposed wherein the finite difference method (FDM) and DEM are coupled to simulate the rubber membrane and soil body, respectively. Numerical plane strain and triaxial tests, served by the flexible membrane, are implemented and analysed later. The effect of the membrane modulus on the measurement accuracy is considered, with analytical formulae derived to judge the significance of this effect. Based on an analysis of stress-strain responses and the grain rotation field, the mechanical performances produced by the flexible and rigid lateral boundaries are compared for the plane strain test. The results show that (1) the effect of the membrane on the test result becomes more significant at larger strain level because the membrane applies additional lateral confining pressure to the soil body; (2) the tested models reproduce typical stress and volumetric paths for specimens with shear bands; (3) for the plane strain test, the rigid lateral boundary derives a much higher peak strength and larger bulk dilatation, but a similar residual strength, compared with the flexible boundary. The latter produces a more uniform (or ‘diffuse') rotation field and more mobilised local kinematics than does the former. All simulations show that the proposed FDM-DEM coupling method is able to simulate laboratory tests with a flexible boundary membrane.  相似文献   
2.
A possible effective stress variable for wet granular materials is numerically investigated based on an adapted discrete element method (DEM) model for an ideal three‐phase system. The DEM simulations consider granular materials made of nearly monodisperse spherical particles, in the pendular regime with the pore fluid mixture consisting of distinct water menisci bridging particle pairs. The contact force‐related stress contribution to the total stresses is isolated and tested as the effective stress candidate for dense or loose systems. It is first recalled that this contact stress tensor is indeed an adequate effective stress that describes stress limit states of wet samples with the same Mohr‐Coulomb criterion associated with their dry counterparts. As for constitutive relationships, it is demonstrated that the contact stress tensor used in conjunction with dry constitutive relations does describe the strains of wet samples during an initial strain regime but not beyond. Outside this so‐called quasi‐static strain regime, whose extent is much greater for dense than loose materials, dramatic changes in the contact network prevent macroscale contact stress‐strain relationships to apply in the same manner to dry and unsaturated conditions. The presented numerical results also reveal unexpected constitutive bifurcations for the loose material, related to stick‐slip macrobehavior.  相似文献   
3.
A constitutive model that captures the material behavior under a wide range of loading conditions is essential for simulating complex boundary value problems. In recent years, some attempts have been made to develop constitutive models for finite element analysis using self‐learning simulation (SelfSim). Self‐learning simulation is an inverse analysis technique that extracts material behavior from some boundary measurements (eg, load and displacement). In the heart of the self‐learning framework is a neural network which is used to train and develop a constitutive model that represents the material behavior. It is generally known that neural networks suffer from a number of drawbacks. This paper utilizes evolutionary polynomial regression (EPR) in the framework of SelfSim within an automation process which is coded in Matlab environment. EPR is a hybrid data mining technique that uses a combination of a genetic algorithm and the least square method to search for mathematical equations to represent the behavior of a system. Two strategies of material modeling have been considered in the SelfSim‐based finite element analysis. These include a total stress‐strain strategy applied to analysis of a truss structure using synthetic measurement data and an incremental stress‐strain strategy applied to simulation of triaxial tests using experimental data. The results show that effective and accurate constitutive models can be developed from the proposed EPR‐based self‐learning finite element method. The EPR‐based self‐learning FEM can provide accurate predictions to engineering problems. The main advantages of using EPR over neural network are highlighted.  相似文献   
4.
5.
6.
A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy–Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
7.
U–Pb age, trace element and Hf isotope compositions of zircon were analysed for a metasedimentary rock and two amphibolites from the Kongling terrane in the northern part of the Yangtze Craton. The zircon shows distinct morphological and chemical characteristics. Most zircon in an amphibolite shows oscillatory zoning, high Th/U and 176Lu/177Hf ratios, high formation temperature, high trace element contents, clear negative Eu anomaly, as well as HREE-enriched patterns, suggesting that it is igneous. The zircon yields a weighted mean 207Pb/206Pb age of 2857 ± 8 Ma, representing the age of the magmatic protolith. The zircon in the other two samples is metamorphic. It has low Th/U ratios, low trace element concentrations, variable HREE contents (33.8 ≥ LuN≥2213; 14.7 ≤ LuN/SmN ≤ 354) and 176Lu/177Hf ratios (0.000030–0.001168). The data indicate that the zircon formed in the presence of garnet and under upper amphibolite facies conditions. The metamorphic zircon yields a weighted mean 207Pb/206Pb age of 2010 ± 13 Ma. These results combined with previously obtained Palaeoproterozoic metamorphic ages suggest a c. 2.0 Ga Palaeoproterozoic collisional event in the Yangtze Craton, which may result from the assembly of the supercontinent Columbia. The zircon in two samples yields weighted mean two-stage Hf model ( T DM2) ages of 3217 ± 110 and 2943 ± 50 Ma, respectively, indicating that their protoliths were mainly derived from Archean crust.  相似文献   
8.
本文以丰富的实际资料,论证了地下水的卤素元素(F、Cl、Br、I)的形成、含量及其分布规律与含水介质成分、上覆岩土性质、地下水退流条件、氧化还原环境、地下水矿化度之间的关系。根据江汉平原东部区和鄱阳湖区地下水中Br、I元素的调查研究结果及它们形成的控制因素与分布规律,结合长江三角洲南部区水文地球化学环境条件分析对比,指出该区是一个形成Br、I矿泉水的有利地区。  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号