首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   9篇
  国内免费   27篇
大气科学   1篇
地球物理   16篇
地质学   179篇
海洋学   16篇
综合类   4篇
自然地理   2篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   1篇
  2019年   7篇
  2018年   3篇
  2017年   7篇
  2016年   3篇
  2015年   8篇
  2014年   8篇
  2013年   7篇
  2012年   4篇
  2011年   7篇
  2010年   1篇
  2009年   7篇
  2008年   11篇
  2007年   10篇
  2006年   10篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   8篇
  2001年   3篇
  2000年   9篇
  1999年   9篇
  1998年   15篇
  1997年   4篇
  1996年   8篇
  1995年   4篇
  1994年   2篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1986年   9篇
  1985年   4篇
  1984年   3篇
排序方式: 共有218条查询结果,搜索用时 31 毫秒
1.
含水矿物在真空下的释Ar机制:Ar-Ar热年代学面临的新问题   总被引:2,自引:0,他引:2  
马芳  穆治国 《地学前缘》2002,9(2):505-510
地质体的实际情况、激光显微探针束研究、XRD和SEM观测以及真空加热下Ar的释放特征都表明体积扩散不是含水矿物在真空加热中释放Ar的唯一机制。在低温下 ,Ar的释放主要受由缺陷引起的短程扩散和体积扩散共同作用的多途径扩散机制制约 ;而在高温下 ,由于含水矿物在真空中不够稳定 ,Ar的释放受到脱羟基、脱氢、氧化反应、分层作用等造成的晶体结构改变的强烈影响。含水矿物在高温下的氧化分解会导致矿物中原始Ar浓度梯度的均一化 ,因而无法得到真实的Ar分布剖面 ,也无法据此计算矿物的封闭温度 ,并进而可能影响到ArAr年龄坪的地质意义。  相似文献   
2.
3.
煤岩显微组分热解气相色谱特征与化学结构剖析   总被引:3,自引:0,他引:3       下载免费PDF全文
煤结构是目前地球化学研究领域中的一个难点,但却具有极其重要的理论及实际意义,本文采用分步热解气相色谱技术将树皮体,镜质体和丝质体分解为分子量较小的可测定的有机化合物,在此基础上,据不同温度下热解产物的组成特征来还原显微组分的化学结构,实验结果表明,煤显微组分主要由四大类官能团组成,一是热稳定性较低的NOS杂原子官能团;二是脂族(脂链、脂环)结构;三是苯、烷基苯(甲苯、二甲苯)、萘等芳香族化合物,四是热稳定性很高的难以分解的稠环芳烃。上述四类化合物集中于显微组分的不同结构简单中,树皮体和镜质体结构单元外侧主要由热稳定性较低的杂原子化合物以及分子量较小的苯和烷基苯组成,而丝质体结构单元外侧则主要以短链脂族结构为主,三组分结构核部由热稳定性很高的难以分解的稠环芳烃组成。连结核部稠环芳烃与结构单元外侧杂原子等官能团的主要是热稳定性较高的脂链结构,煤显微组分热成烃主要按结构中各官能团键的强弱随热演化程度的加深依次脱除,生成油气,基本上属平行独立依次反应机制,亦“官能团脱除型”,此外,还包括少量的长链脂族结构裂解为短链脂肪烃的“解聚”过程。  相似文献   
4.
A core from the Cambay Shale Formation of the Cambay Basin, containing immature Type III organic matter, was pyrolysed at 300°C for different durations of time to different maturation levels. Fractionation effects were studied employing a three-step extraction technique after removal of the expelled pyrolysate. The extractable organic matter (EOM) obtained on extraction of the whole core is assumed to be that present in open pores, while that obtained on finely crushing the sample is assumed to be that present in closed pores. The EOM obtained from 1 cm chips is termed EOM from semi-open pores. The gross composition of the pyrolysates expelled during pyrolysis is not similar to the oils reservoired in the area, and there is no significant fractionation observed between expelled pyrolysates and unexpelled EOM. Our study indicates movement of fluids between closed, semi-open and open pores. In both systems, there is a higher concentration of EOM in open pores than in semi-open and closed pores, and the fraction of EOM in open pores is much greater in the artificial system than in the natural system. Fractionation effects on n-alkane and isoprenoid hydrocarbon-based parameters were also studied. n-Alkenes are present in semi-open and closed pores of the immature core and in the core after it was pyrolysed to 300°C for 6 and 48 h, but are absent in the open pores. n-Alkenes are present in closed pores in the naturally matured core. Presence of n-alkenes in the pyrolysates expelled during the 6 and 48 h experiments, but their absence in the open pores of the core, indicates that expulsion also occurs through temporary microfractures during laboratory pyrolysis, whereas in the natural system expulsion from closed pores seems to be only via semi-open and open pores.  相似文献   
5.
It has been proposed that Victorian brown coal can be considered as a two-component structure — a lignocellulosic “host”, containing various amounts of weakly bound or entrapped “guest” material together with very small amounts of inorganic and/or mineral matter. The latter predominantly consists of wax esters and/or terpenoid material. In this paper we describe attempts to gain structural information regarding the more complex, “host” component of the coal. Our initial model compound has been humic acid that can be readily obtained from the coal by alkaline extraction. It has been found that “pure” humic acid, free from material associated with the “guest” components of the coal, can be obtained by a highly selective, low-yielding alkaline extraction. This humic acid has been studied by nmr spectroscopy and pyrolysis gas chromatography-mass spectroscopy (py-gc/ms). The products arising from py-gc/ms have been compared with those obtained from similar pyrolysis of whole coals. Alkylation of humic acids using alkyl halides in the presence of base has been successfully carried out and reactivity of the resulting materials compared with those of the parent coal and humic acid.  相似文献   
6.
We synthesized superhydrous phase B (shy-B) at 22 GPa and two different temperatures: 1200°C (LT) and 1400°C (HT) using a multi-anvil apparatus. The samples were investigated by transmission electron microscopy (TEM), single crystal X-ray diffraction, Raman and IR spectroscopy. The IR spectra were collected on polycrystalline thin-films and single crystals using synchrotron radiation, as well as a conventional IR source at ambient conditions and in situ at various pressures (up to 15 GPa) and temperatures (down to −180°C). Our studies show that shy-B exists in two polymorphic forms. As expected from crystal chemistry, the LT polymorph crystallizes in a lower symmetry space group (Pnn2), whereas the HT polymorph assumes a higher symmetry space group (Pnnm). TEM shows that both modifications consist of nearly perfect crystals with almost no lattice defects or inclusions of additional phases. IR spectra taken on polycrystalline thin films exhibit just one symmetric OH band and 29 lattice modes for the HT polymorph in contrast to two intense but asymmetric OH stretching bands and at least 48 lattice modes for the LT sample. The IR spectra differ not only in the number of bands, but also in the response of the bands to changes in pressure. The pressure derivatives for the IR bands are higher for the HT polymorph indicating that the high symmetry form is more compressible than the low symmetry form. Polarized, low-temperature single-crystal IR spectra indicate that in the LT-polymorph extensive ordering occurs not only at the Mg sites but also at the hydrogen sites.  相似文献   
7.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   
8.
Mafic microgranular enclaves (MMEs) in host granitoids can provide important constraints on the deep magmatic processes. The Oligocene-Miocene granitoid plutons of the NW Anatolia contain abundant MMEs. This paper presents new hornblende Ar-Ar ages and whole-rock chemical and Sr-Nd isotope data of the MMEs from these granitic rocks. Petrographically, the MMEs are finer-grained than their host granites and contain the same minerals as their host rocks (amphibole + plagioclase + biotite + quartz + K-feldspar), but in different proportions. The Ar-Ar ages of the MMEs range from 27.9 ± 0.09 Ma to 19.3 ± 0.01 Ma and are within error of their respective host granitoids. The MMEs are metaluminous and calc-alkaline, similar to I-type granites. The Sr-Nd isotopes of MMEs are 0.7057 to 0.7101 for 87Sr/86Sr and 0.5123 to 0.5125 for 143Nd/144Nd, and are similar to their respective host granitoids. These lithological, petrochemical and isotopic characteristics suggest that the MMEs in this present study represent chilled early formed cogenetic hydrous magmas produced during a period of post-collisional lithospheric extension in NW Anatolia. The parental magma for MMEs and host granitoids might be derived from partial melting of underplated mafic materials in a normally thickened lower crust in a post-collisional extensional environment beneath the NW Anatolia. Delamination or convective removal of lithospheric mantle generated asthenospheric upwelling, providing heat and magma to induce hydrous re-melting of underplated mafic materials in the lower crust.  相似文献   
9.
从吐哈盆地侏罗纪煤中分离富集了藻类体、孢子体、角质体、镜质体、基质镜质体和丝质体6种主要显微组分,进行了热解及热模拟实验,并对各显微组分热模拟生成的产物热解油进行了碳同位素组成等分析。各显微组分热解生烃潜力及其热解产物热解油的碳同位素组成表明,煤系有机质中藻类体的生油潜力最高,生成的液态烃类的碳同位素组成最轻;孢子体、角质体等陆源富氢组分生烃潜力低于藻类体,生成的液态烃类的碳同位素组成重于藻类体生成的液态烃类,与煤系含油气盆地中原油的碳同位素组成基本一致。这些富氢显微组分应该是煤系有机质中主要的生油显微组分。镜质体和基质镜质体的生油潜力相对较低,其生成的液态烃类的碳同位素组成比一般煤系原油重得多,而且这些组分本身对液态烃具有较强的吸附力,尽管其在煤系有机质中所占的比例很大,仍然难以成为生成液态石油的主要显微组分,只能在高成熟演化阶段成为良好的生气显微组分。丝质体等惰性组分生烃潜力极低,不可能成为生油组分。此外,结合原煤的显微组分组成、生烃潜力和元素分析,提出仅仅以壳质组的含量高低来评价煤的生烃潜力不完全可靠,热解是经济、快速、有效的评价方法。  相似文献   
10.
Mathematical models of hydrocarbon formation can be used to simulate the natural evolution of different types of organic matter and to make an overall calculation of the amounts of oil and/or gas produced during this evolution. However, such models do not provide any information on the composition of the hydrocarbons formed or on how they evolve during catagenesis.From the kinetic standpoint, the composition of the hydrocarbons formed can be considered to result from the effect of “primary cracking” reactions having a direct effect on kerogen during its evolution as well as from the effect of “secondary cracking” acting on the hydrocarbons formed.This report gives experimental results concerning the “primary cracking” of Types II and III kerogens and their modelling. For this, the hydrocarbons produced have been grouped into four classes (C1, C2–C5, C6–C15 and C15+). Experimental data corresponding to these different classes were obtained by the pyrolysis of kerogens with temperature programming of 4°C/min with continuous analysis, during heating, of the amount of hydrocarbons corresponding to each of these classes.The kinetic parameters of the model were optimized on the basis of the results obtained. This model represents the first step in the creation of a more sophisticated mathematical model to be capable of simulating the formation of different hydrocarbon classes during the thermal history of sediments. The second step being the adjustment of the kinetic parameters of “secondary cracking”.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号