首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   20篇
  国内免费   8篇
测绘学   1篇
大气科学   4篇
地球物理   110篇
地质学   80篇
海洋学   16篇
自然地理   106篇
  2023年   2篇
  2022年   6篇
  2021年   12篇
  2020年   16篇
  2019年   16篇
  2018年   6篇
  2017年   11篇
  2016年   9篇
  2015年   14篇
  2014年   11篇
  2013年   17篇
  2012年   17篇
  2011年   12篇
  2010年   15篇
  2009年   12篇
  2008年   17篇
  2007年   8篇
  2006年   8篇
  2005年   14篇
  2004年   9篇
  2003年   6篇
  2002年   12篇
  2001年   11篇
  2000年   8篇
  1999年   7篇
  1998年   3篇
  1997年   8篇
  1996年   9篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   4篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有317条查询结果,搜索用时 15 毫秒
1.
A consideration of the dune:antidune transition in fine gravel   总被引:1,自引:0,他引:1  
Hydraulic data defining the dune:antidune transition in fine gravel are compared with potential flow theory, and information is drawn from published experiments and field‐based studies. Attention is given to both transitional bedforms and the development of downstream‐migrating antidunes. In the latter case, most data pertain to sand beds and not to gravel. Empirical data provide some weak support for the theoretical notion that the transition occurs at progressively lower Froude numbers at greater relative depths. Although a critical Froude number of 0·84 may reasonably be applied for the beginning of the dune to antidune transformation, lag effects (and a possible depth limitation) ensure that transitional bedforms may persist across a broad range of Froude numbers from 0·5 to 1·8. This latter observation has great relevance for palaeohydraulic estimates derived from outcrop data. Whereas the application of theoretical bedform existence fields, based upon potential flow theory, to fine gravel was previously purely speculative, the addition of experimental and field data to these plots provides a degree of confidence in applying stability theory to practical geological problems. For the first time, laboratory data pertaining to downstream‐migrating gravel antidunes are compared with theory. These bedforms have been reported from certain experimental near‐critical flows above sand or gravel beds, but have been observed infrequently in natural streams. However, there are no detailed studies from natural rivers and only a few contentious identifications from outcrops. Nevertheless, the limited hydraulic data conform to theoretical expectations.  相似文献   
2.
Samples of dune sands, surveys of the morphology and field measurements of wind velocity and direction of a simple linear dune in Taklimakan Sand Sea show that the airflow and sand flux vary with the change of wind direction on the dune surface. Decrease of the airflow stress on the lee flank does not result in much decrease of the sand flux because of the low threshold shear velocities and the airflow conditions. There are no significant relations between the sand flux on the lee flank and the angle of incidence of the airflow. The low threshold shear velocities and the maintenance of the sand flux at the lee flank are the main mechanisms keeping the linear shape of the dunes. Measurements of the sand flux shows that it reaches a maximum on the crest of the dune. The grain size of the transported sands has some differences compared to that of the dune surface. The sands transported are finer than that on the dune surface, but better sorted under the influence of the medium to low wind activity. The field experiment results exhibit that it is possible for the dunes to be shaped as linear dunes during the processes of accumulation and elongation.  相似文献   
3.
Abstract The branches of the River Rhine in the Netherlands, characterized by a sand–gravel bed in the upstream part and a sand bed in the downstream part of the river system, show migrating dunes, especially during floods. In the last 20 years, these dunes have been studied extensively. High-resolution echo-sounding measurements of these dunes, made with single and multibeam equipment, were analysed for three different sections of the Rhine river system during several floods. This analysis was done to quantify the growth, decay and migration rates of the dunes during floods. In addition, the migrating dunes were used to calculate bedload transport rates with dune tracking. The results of dune growth and decay and migration rate are shown to be very different for the various sections during the various floods, and these differences are related to differences in grain size of the bed and to differences in the distribution of discharge over the main channel and the floodplain. The relations are used to show that the growth and migration rate of dunes, and the calculated bedload transport rates during the rising stage of a flood wave can be predicted from the mobility of the bed material with simple power relations.  相似文献   
4.
Transverse dunes appear in regions of mainly unidirectional wind and high sand availability. A dune model is extended to two‐dimensional calculation of the shear stress. It is applied to simulate dynamics and morphology of three‐dimensional transverse dunes. In the simulations they seem to reach translational invariance and do not stop growing. Hence, simulations of two‐dimensional dune ?elds have been performed. Characteristic laws were found for the time evolution of transverse dunes. Bagnold's law of the dune velocity is modi?ed and reproduced. The interaction between transverse dunes led to the interesting conclusion that small dunes can travel over bigger ones. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
5.
Preservation and effective management of highly dynamic coastal features located in areas under development pressures requires in-depth understanding of their evolution. Modern geospatial technologies such as lidar, real time kinematic GPS, and three-dimensional GIS provide tools for efficient acquisition of high resolution data, geospatial analysis, feature extraction, and quantification of change. These techniques were applied to the Jockey's Ridge, North Carolina, the largest active dune field on the east coast of the United States, with the goal to quantify its deflation and rapid horizontal migration. Digitized contours, photogrammetric, lidar and GPS point data were used to compute a multitemporal elevation model of the dune field capturing its evolution for the period of 1974– 2004. In addition, peak elevation data were available for 1915 and 1953. Analysis revealed possible rapid growth of the dune complex between 1915–1953, followed by a slower rate of deflation that continues today. The main dune peak grew from 20.1 m in 1915 to 41.8 m in 1953 and has since eroded to 21.9 m in 2004. Two of the smaller peaks within the dune complex have recently gained elevation, approaching the current height of the main dune. Steady annual rate of main peak elevation loss since 1953 suggests that increase in the number of visitors after the park was established in 1974 had little effect on the rate of dune deflation. Horizontal dune migration of 3–6 m/yr in southerly direction has carried the sand out of the park boundaries and threatened several houses. As a result, the south dune section was removed and the sand was placed at the northern end of the park to serve as a potential source. Sand fencing has been an effective management strategy for both slowing the dune migration and forcing growth in dune elevation. Understanding the causes of the current movements can point to potential solutions and suggest new perspectives on management of the dune as a tourist attraction and as a recreation site, while preserving its unique geomorphic character and dynamic behavior.  相似文献   
6.
Bedform geometry is widely recognized to be a function of transport stage. Bedform aspect ratio (height/length) increases with transport stage, reaches a maximum, then decreases as bedforms washout to a plane bed. Bedform migration rates are also linked to bedform geometry, in so far as smaller bedforms in coarser sediment tend to migrate faster than larger bedforms in finer sediment. However, how bedform morphology (height, length and shape) and kinematics (translation and deformation) change with transport stage and suspension have not been examined. A series of experiments is presented where initial flow depth and grain size were held constant and the transport stage was varied to produce bedload dominated, mixed‐load dominated and suspended‐load dominated conditions. The results show that the commonly observed pattern in bedform aspect ratio occurs because bedform height increases then decreases with transport stage, against a continuously increasing bedform length. Bedform size variability increased with transport stage, leading to less uniform bedform fields at higher transport stage. Total translation‐related and deformation‐related sediment fluxes all increased with transport stage. However, the relative contribution to the total flux changed. At the bedload dominated stage, translation‐related and deformation‐related flux contributed equally to the total flux. As the transport stage increased, the fraction of the total load contributed by translation increased and the fraction contributed by deformation declined because the bedforms got bigger and moved faster. At the suspended‐load dominated transport stage, the deformation flux increased and the translation flux decreased as a fraction of the total load, approaching one and zero, respectively, as bedforms washed out to a plane bed.  相似文献   
7.
The ability to predict bedform migration in rivers is critical for estimating bed material load, yet there is no relation for predicting bedform migration (downstream translation) that covers the full range of conditions under which subcritical bedforms develop. Here, the relation between bedform migration rates and transport stage is explored using a field and several flume data sets. Transport stage is defined as the non‐dimensional Shields stress divided by its value at the threshold for sediment entrainment. Statistically significant positive correlations between both ripple and dune migration rates and transport stage are found. Stratification of the data by the flow depth to grain‐size ratio improved the amount of variability in migration rates that was explained by transport stage to ca 70%. As transport stage increases for a given depth to grain‐size ratio, migration rates increase. For a given transport stage, the migration rate increases as the flow depth to grain‐size ratio gets smaller. In coarser sediment, bedforms move faster than in finer sediment at the same transport stage. Normalization of dune migration rates by the settling velocity of bed sediment partially collapses the data. Given the large amount of variability that arises from combining data sets from different sources, using different equipment, the partial collapse is remarkable and warrants further testing in the laboratory and field.  相似文献   
8.
In this work, we perform an analysis of large dark dunes within Moreux Crater and Herschel Crater on Mars using High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) data sets. These data allow us to conduct a detailed analysis of dune morphology and slip faces, concluding that the studied dune fields are influenced by topographically‐controlled complex wind directions. Our morphological analysis reveals that inside Moreux Crater in particular, the topographic setting dominates the wind flow direction, leading to the development of a sand transport pathway encircling the central peak of the crater. The dune fields in Herschel Crater are also affected by winds controlled by variable topography as suggested by the presence of complex dunes and dune fields. Our analysis indicate that the studied dune systems is not the result of paleo‐wind regimes. Furthermore, we perform thermal inertia measurements using thermal emission spectrometer (TES) data, which indicate that the studied dune fields consist of medium sand 250–500 µm in diameter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
9.
Low‐elevation areas within a sandy barrier island are subject to flooding via saturation overland flow following moderate storm surges and rainfall events. Using a high resolution topographic survey and simple hydrology models, we estimate the discharge and velocities from storm surge return flow and saturation overland flow. Results show that return flow velocities are of the same magnitude as the critical velocity necessary to mobilize sand when a hydraulic connection between the watershed and back‐barrier bay is present. Storms of moderate strength and rainfall intensity may be sufficient to keep the return channels open within the back‐barrier, thus providing natural conduits for water exchange from overwash events during extreme storm surges triggered by hurricanes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
10.
The idealized model of Besio et al. (On the formation of sand waves and sand banks. Journal of Fluid Mechanics 2006; 557: 1–17) is used to predict the wavelength of tidal dunes (sand waves) generated by tidal currents in estuaries and shallow seas. The predictions are then analysed and a formula is proposed to estimate the wavelength of tidal dunes as a function of the parameters of the problem. The wavelength of the dunes is found to increase when the water depth is increased and/or the strength of the tidal current is decreased. On the other hand, the size of the bottom material (if medium sand is considered) and the tidal ellipticity are found to have a relatively small influence on the length of the bottom forms. The formula proposed provides results which are consistent with field observations of different authors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号