首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6692篇
  免费   867篇
  国内免费   1530篇
测绘学   1070篇
大气科学   26篇
地球物理   1707篇
地质学   3844篇
海洋学   194篇
天文学   1096篇
综合类   799篇
自然地理   353篇
  2024年   34篇
  2023年   103篇
  2022年   169篇
  2021年   206篇
  2020年   233篇
  2019年   277篇
  2018年   227篇
  2017年   263篇
  2016年   294篇
  2015年   307篇
  2014年   347篇
  2013年   340篇
  2012年   348篇
  2011年   395篇
  2010年   304篇
  2009年   509篇
  2008年   458篇
  2007年   472篇
  2006年   477篇
  2005年   389篇
  2004年   406篇
  2003年   383篇
  2002年   308篇
  2001年   253篇
  2000年   249篇
  1999年   232篇
  1998年   204篇
  1997年   162篇
  1996年   147篇
  1995年   123篇
  1994年   110篇
  1993年   92篇
  1992年   75篇
  1991年   44篇
  1990年   40篇
  1989年   29篇
  1988年   29篇
  1987年   19篇
  1986年   13篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1979年   3篇
  1975年   1篇
  1954年   3篇
排序方式: 共有9089条查询结果,搜索用时 0 毫秒
1.
We present our observations of the galaxy UGS 5600 with a long-slit spectrograph (UAGS) and a multipupil field spectrograph (MPFS) attached to the 6-m Special Astrophysical Observatory telescope. Radial-velocity fields of the stellar and gaseous components were constructed for the central region and inner ring of the galaxy. We proved the existence of two nearly orthogonal kinematic subsystems and conclude that UGC 5600 is a galaxy with an inner polar ring. In the circumnuclear region, we detected noncircular stellar motions and suspected the existence of a minibar. The emission lines are shown to originate in H II regions. We estimated the metallicity from the intensity ratio of the [N II]λ6583 and Hα lines to be nearly solar, which rules out the possibility that the polar ring was produced by the accretion of gas from a dwarf companion.  相似文献   
2.
3.
4.
昆仑山口大地震与地形变异常的讨论   总被引:7,自引:5,他引:2  
针对昆仑山口大地震,总结了多种地形变(大地测量)手段所显示的异常变化及其时空分布,结果显示:8.1级大震前存在空间尺度大,时间尺度的地形变前兆异常,简要介绍了相关的异常图像,给出了初步解释,并对未来震情的发展进行了探讨,认为近期内强震活动向华北迁移的可能性不大。  相似文献   
5.
6.
The frequent use of soils and earth materials for hydraulic capping and for geo‐environmental waste containment motivated our interest in detailed modelling of changes in size and shape of macro‐pores to establish links between soil mechanical behaviour and concurrent changes in hydraulic and transport properties. The objective of this study was to use finite element analysis (FEA) to test and extend previous analytical solutions proposed by the authors describing deformation of a single macro‐pore embedded in linear viscoplastic soil material subjected to anisotropic remote stress. The FEA enables to consider more complex pore geometries and provides a detailed picture of matrix yield behaviour to explain shortcomings of approximate analytical solutions. Finite element and analytical calculations agreed very well for linear viscous as well as for viscoplastic materials, only limited for the case of isotropic remote stress due to the simplifications of the analytical model related to patterns and onset of matrix‐yielding behaviour. FEA calculations were compared with experimental data obtained from a compaction experiment in which pore deformation within a uniform modelling clay sample was monitored using CAT scanning. FEA predictions based on independently measured material properties and initial pore geometry provided an excellent match with experimentally determined evolution of pore size and shape hence lending credence to the potential use of FEA for more complex pore geometries and eventually connect macro‐pore deformation with hydraulic properties. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
7.
We present an improved analytic calculation for the tidal radius of satellites and test our results against N -body simulations.
The tidal radius in general depends upon four factors: the potential of the host galaxy, the potential of the satellite, the orbit of the satellite and the orbit of the star within the satellite . We demonstrate that this last point is critical and suggest using three tidal radii to cover the range of orbits of stars within the satellite. In this way we show explicitly that prograde star orbits will be more easily stripped than radial orbits; while radial orbits are more easily stripped than retrograde ones. This result has previously been established by several authors numerically, but can now be understood analytically. For point mass, power-law (which includes the isothermal sphere), and a restricted class of split power-law potentials our solution is fully analytic. For more general potentials, we provide an equation which may be rapidly solved numerically.
Over short times (≲1–2 Gyr ∼1 satellite orbit), we find excellent agreement between our analytic and numerical models. Over longer times, star orbits within the satellite are transformed by the tidal field of the host galaxy. In a Hubble time, this causes a convergence of the three limiting tidal radii towards the prograde stripping radius. Beyond the prograde stripping radius, the velocity dispersion will be tangentially anisotropic.  相似文献   
8.
9.
In this, the third in a series of three papers concerning the SuperCOSMOS Sky Survey, we describe the astrometric properties of the data base. We describe the algorithms employed in the derivation of the astrometric parameters of the data, and demonstrate their accuracies by comparison with external data sets using the first release of data, the South Galactic Cap survey. We show that the celestial coordinates, which are tied to the International Celestial Reference Frame via the Tycho–2 reference catalogue, are accurate to better than ±0.2 arcsec at J , R ∼19,18 , rising to ±0.3 arcsec at J , R ∼22,21 , with positional-dependent systematic effects from bright to faint magnitudes at the ∼0.1-arcsec level. The proper motion measurements are shown to be accurate to typically ±10 mas yr−1 at J , R ∼19,18 , rising to ±50 mas yr−1 at J , R ∼22,21 , and are tied to zero using the extragalactic reference frame. We show that the zero-point errors in the proper motions are ≤1 mas yr−1 for R >17 , and are no larger than ∼10 mas yr−1 for R <17 mas yr−1 .  相似文献   
10.
A model is proposed for the formation of water ice mantles on grains in interstellar clouds. This occurs by direct accretion of monomers from the gas, be they formed by gas or surface reactions. The formation of the first monolayer requires a minimum extinction of interstellar radiation, sufficient to lower the grain temperature to the point where thermal evaporation of monomers is just offset by monomer accretion from the gas. This threshold is mainly determined by the adsorption energy of water molecules on the grain material; for hydrocarbon material, chemical simulation places this energy between 0.5 and 2 kcal mol−1, which sets the (true) visible extinction threshold at a few magnitudes. However, realistic distributions of matter in a cloud will usually add to this an unrelated amount of cloud core extinction, which can explain the large dispersion of observed (apparent) thresholds. Once the threshold is crossed, all available water molecules in the gas are quickly adsorbed, because the grain cools down and the adsorption energy on ice is higher than on bare grain. The relative thickness of the mantle, and, hence, the slope of  τ3( A v)  depend only on the available water vapour, which is a small fraction of the oxygen abundance. Chemical simulation was also used to determine the adsorption sites and energies of O and OH on hydrocarbons and study the dynamics of formation of water molecules by surface reactions with gaseous H atoms, as well as their chances to stick in situ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号