首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   4篇
地球物理   11篇
地质学   2篇
自然地理   4篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2009年   2篇
  2006年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1987年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
Relatively little attention has been given to river channel adjustments that occur downstream from channelization works. This study is concerned with the nature of channel adjustments downstream from a total of 46 channelization works located in low and high energy environments in England and Wales. Channel changes are identified principally by the method of field survey and by reconstructing the original positions of eroded beds and banks. Use is also made of maps, aerial photographs, and engineering drawings of different dates and the technique of space-for-time substitution is applied. Enlargement of channel cross-sections through erosion had occurred downstream from a variety of types, sizes, and dates of channelization works. The maximum increase of channel size was 153 per cent. Out of a total of 14 sites with enlarged channel cross-sections, seven had undergone a change of width only, at a further three width increased rather than depth, and at the remaining four sites depth increases were dominant. These sites all have relatively high stream powers. Factors causing spatial variation of erosion included tree roots locally binding bank sediments and the occurrence of bends. Planform change had taken place at only one site. A further three high stream power sites had downstream reaches incised into bedrock and therefore did not exhibit adjustment. Channel enlargement is explained in terms of increased flood flows downstream from channelization works causing higher stream velocities, which in turn cause erosion, thereby increasing channel width and/or depth. Examination of flow records for 35 stations revealed flood events which would formerly have spread overbank but are now confined by the channelization works and are therefore likely to alter downstream flows. At sites with downstream change it is proposed that the energy of increased flows was sufficient to exceed a threshold required for erosion of perimeter sediments. By contrast the absence of change at a majority of sites in low energy lowland areas could be a reflection of both the incompetence of increased flows to erode and resistance provided by perimeter sediments. Sites with erosion features appear not to have yet attained new equilibrium conditions.  相似文献   
2.
基于前期研究工作成果和外部环境变化因素分析,探讨了青弋江发育原因及其与长江贯通的关系。研究表明:① 昆黄运动可能在长江中下游地区产生了区域构造响应,导致研究区断层被激活而发生了较大幅度的断块抬升运动,进而为青弋江发育提供了下切驱动力,驱动了青弋江发育;② 东亚夏季风在约1.3 Ma和约0.9 Ma发生的2次显著阶段性减弱事件,引起区域降水量显著增加,进而为青弋江发育提供了下切媒介和持续水流,控制了青弋江发育年代;③ 青弋江发育与长江贯通可能都是昆黄运动区域构造响应与东亚夏季风强度阶段性减弱共同作用的结果,并且长江贯通后所形成的新局部侵蚀基准面也可能促进了青弋江发育,因此青弋江发育年代在一定程度上能反映长江贯通年代。  相似文献   
3.
Channelization of the severely polluted Odra and Vistula Rivers in Poland induced intensive accumulation of fine‐grained deposits rich in organic matter and heavy metals. These sediments have been identified in vertical profiles in a narrow zone along river banks both in groyne‐created basins and on the floodplain. Grain size, organic matter, zinc (Zn), lead (Pb), copper (Cu) content and cesium‐137 (137Cs) was used for sediment dating and, stratigraphy and chemistry have been diagnostic features for these deposits, named industrial alluvium. In the most polluted river reaches stabilized by bank reinforcements and groynes, 2‐m‐thick slack water groyne deposits are composed of uniform strata of polluted silts with organic matter content over 10%, Zn content over 1000 mg/kg and average Cu and Pb over 100 mg/kg. The average rate of sediment accretion in groynes is higher than on the floodplain and reaches 5 cm/yr. Stratification which appears at higher levels in the groyne fields and on the levees reflects a change from in‐channel to overbank deposition and is typified by dark layers separated by bright, sandy, and less polluted strata. Stratified, 4‐m‐thick, sediment sequences have been found in groyne fields of incised river reaches. The average rate of sediment accretion in these reaches is of the order of 5 cm/yr. In stable and relatively less polluted river reaches, vertical‐accretion organic deposits are finely laminated and the average rate of deposition amounts to a few millimeters per year. Investigations indicate that groyne construction favors conditions for long‐term storage of sediments at channel banks. For this reason, groynes should be considered as structures that efficiently limit sudden release of sediment‐associated heavy metals stored in channels and in floodplains of the historically polluted rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
The effects of wetlands on hydrology, water quality, and wildlife habitat are internationally recognized. Protecting the remaining wetlands is one of the most important environmental issues in many countries. However wetlands in Japan have been gradually shrinking due to agricultural development and urbanization, which generally lowers the groundwater level and introduces suspended sediment and sediment-associated nutrients into wetlands. We examined the influences of channelization on discharge of suspended sediment and wetland vegetation in Hokkaido, northern Japan. The impact of river channelization was confirmed not only by the sediment budgets but also by river aggradation or degradation after the channelization and by the resultant vegetational changes. The budgets of suspended sediment demonstrated that wash load was the predominant component accounting for 95% of the total suspended load delivered into the wetland. This suspended sediment was primarily transported into the wetland by flooding associated with heavy rainfall. Twenty-three percent of the wash load and 63% of the suspended bed material load were deposited in the channelized reach, which produced aggradation of about 2 m at the end of the reach. A shorting of the length of the channel, due to channelization of a meandering river, steepened the slope and enhanced the stream power to transport sediment. This steepening shifted the depositional zones of fine sediment 5 km downstream and aggraded the riverbed. Development of the watershed may increase not only the water discharge but also the amount of suspended sediments. The aggradation reduced the carrying capacity of the channel and caused sediment ladened water to flood over the wetlands. The fine sediment accumulated on the wetlands gradually altered the edaphic conditions and wetland vegetation. A low percentage (10 to 15%) of organic contents of wetlands' soil is more evidence indicating that the present condition is far different from normal. Original vegetation such as sedges and Alnus japonica were disappearing from the adjacent areas of the river channel and were being replaced by willow trees (Salix spp.).  相似文献   
5.
The development of alternate bars in channelized rivers can be explained theoretically as an instability of the riverbed when the active channel width to depth ratio exceeds a threshold. However, the development of a vegetation cover on the alternate bars of some channelized rivers and its interactions with bar morphology have not been investigated in detail. Our study focused on the co‐evolution of alternate bars and vegetation along a 33 km reach of the Isère River, France. We analysed historical information to investigate the development of alternate bars and their colonization by vegetation within a straightened, embanked river subject to flow regulation, sediment mining, and vegetation management. Over an 80 year period, bar density decreased, bar length increased, and bar mobility slowed. Vegetation encroachment across bar surfaces accompanied these temporal changes and, once established, vegetation cover persisted, shifting the overall system from an unvegetated to a vegetated dynamic equilibrium state. The unvegetated morphodynamics of the impressively regular sequence of alternate bars that developed in the Isère following channelization is consistent with previous theoretical morphodynamic work. However, the apparent triggering dynamics of vegetation colonization needs to be investigated, based on complex biophysical instability processes. If instability related to vegetation colonization is confirmed, further work needs to focus on the relevance of initial conditions for this instability, and on related feedback effects such as how the morphodynamics of bare‐sediment alternate bars may have affected vegetation development and, in turn, how vegetation has created a new dynamic equilibrium state. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
6.
G. R. Hancock  K. G. Evans 《水文研究》2006,20(14):2935-2951
Gullying is a significant process in the long‐term dynamics and evolution of both natural and rehabilitated (i.e. post‐mining) landscapes. From a landscape management perspective it is important that we understand gully initiation and development, as it is well recognized that catchment disturbance can result in the development of gullies that can be very difficult to rehabilitate. This study examines gully position using geomorphic statistics relating to features such as depth, width and length in a catchment undisturbed by European activity in the Northern Territory, Australia. The results demonstrate that gullying occurs throughout the catchment and that a slope–area threshold does not exist and that gully position broadly follows the catchment area–slope relationship. Simple relationships relating catchment area and slope to gully depth, width and length provide poor results, despite these relationships having been found to apply for ephemeral gullies in cropland. The results suggest that gully initiation thresholds are low as a result of an enhanced fire regime. A threshold model for gully position that uses catchment area and slope to switch between gully and hillslope was evaluated and found broadly to capture gully position. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
7.
Autogenic cycles of channelization, terminal deposit formation, channel backfilling and channel abandonment have been observed in the formation of fans and deltas. In subcritical flow, these terminal deposits are characterized as mouth bars that lead to flow bifurcation, backwater and eventual channel backfilling. Similar, although less well characterized, cycles also take place on supercritical subaerial and submarine fans. This study investigates the hydraulics and morphodynamics of autogenic incision and backfilling cycles associated with supercritical distributive channel flow in alluvial fans. The research questions of the study are: (i) how are supercritical autogenic cycles on alluvial fans different from the subcritical cycles; (ii) what are the hydraulic and sediment transport characteristics at the various stages of autogenic feedback cycles; and (iii) what role do the cycles play in the overall fan evolution? These questions are investigated in the laboratory, and emphasis is placed on measuring the hydraulic and topographic evolution of the systems during the cycles. The cycles arise quasi‐periodically under constant water and sediment discharge. Periods of sheet‐like flow are competent to move sediment () but not competent enough to carry the full imposed load. The net result is preferential deposition near the inlet, resulting in fan steepening and an increase in flow competency with time. At a sediment supply to capacity ratio of , the sheet‐like flow is unstable to small erosional events near the inlet, resulting in the collapse of the distributed flow to a strong channelized state. During channelization, a graded () supercritical (Fr > 1) channel develops and transports eroded and fed sediment up to and through the fan front – extending the fan, initiating a lobe shaped deposit and reducing the local slope. The slopes defined by a sheet‐like flow with and channelized flow with set the maximum and minimum slopes on the fan, respectively. Once formed, graded channels act as bypass conduits linking the inlet with the terminal deposit. On average, deposits are up to six channel depths in thickness and have volumes approximately five times that of the excavated channel. The main distinctive characteristics of the supercritical cycles relate to how the flow interacts with the terminal deposit. At the channel to deposit transition, the flow undergoes a weak hydraulic jump, resulting in rapid sedimentation, dechannelization and lateral expansion of the flow, and deposition of any remaining sediment on top of the channel fill and floodplain. This process often caps the channel as the deposit propagates up channel erasing memory of the excavated channel.  相似文献   
8.
A chronosequence of 17 soils in late Quaternary alluvium on Black Mesa, northeast Arizona, permits quantification of rates of pedogenesis in a semi-arid region. Based on 24 tree-ring, radiocarbon, and archaeological dates, soil ages range from about 100 to 20,000 to 30,000+ years. Data indicate that ochric, cambic, argillic, natric, and calcic horizons form within about 100, 500, 1000, 3000, and 15,000 years, respectively, whereas mollic epipedons form within 1000 years. Bk horizons with Stage I, I+, II+, and III carbonate morphologies form within about 1000, 4000, 10,000, and 15,000 years, respectively. Thickness of Bt and Bk horizons, and Harden profile development and clay accumulation index values increase in a linear manner with increasing soil age. High resolution dating suggests rates of pedogenesis on Black Mesa are rapid relative to those documented elsewhere in the southwest United States and in the Rocky Mountains. Rates of soil formation recorded on Black Mesa, however, necessarily incorporate the combined effects of slight variations in elevation, climate, vegetation, topography, and parent materials throughout the region, as well as the influence of additions of atmospheric dust at the soil surface. [Key words: soil, pedogenesis, soil geomorphology, Quaternary, Arizona.]  相似文献   
9.
10.
Alterations in flood flows of the Raba River are examined to determine the influence exerted on flood waves by changing morphological conditions. With stable vertical channel position, the river increased its sinuosity during the 1920s to 1940s, and the change was accompanied by a growing tendency to flood-wave attenuation. The temporal change in flood-wave transformation is typical of a developing low-flow system. Subsequently, streambed degradation has been induced due to channnelization works which straightened and narrowed the river. Flood waves became progressively more flashy as channel incision progressed. The increase in magnitude of flood waves passing the deepened reach was greatest for bankfull flows and diminished for lower in-bank flows and higher overbank flows. The tendency to magnification of peak discharges has been also found in other Carpathian rivers which were considerably degraded in the 20th century in response to channelization. Introducing an empirically found correcting factor into the analysis of the ratio of outflow to inflow peak discharges shows how the conditions of peak-flow transformation in a reach have changed since the beginning of the study period. A marked coincidence between changes in vertical channel location and variations in the ‘corrected’ peak-discharge ratio proves channel changes to be a very important reason for the growing flood hazard in southern Poland. Gradient oversteepening and channel narrowing, caused by channelization, lead to formation of a river system having a steep, straight, narrow and deep channel. Such a morphology distinguishes the system from natural low-flow and high-flow systems. Reduced floodplain water storage and self-acceleration of flow concentrated in a channel zone make flood waves progressively more flashy on their way down the channelization-formed system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号