首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   1篇
地球物理   7篇
地质学   20篇
海洋学   7篇
天文学   1篇
自然地理   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1987年   1篇
  1982年   1篇
排序方式: 共有40条查询结果,搜索用时 187 毫秒
1.
Ecotone or Ecocline: Ecological Boundaries in Estuaries   总被引:1,自引:0,他引:1  
Two main ecological boundaries, ecotone and ecocline, have been defined in landscape ecology. At this scale, the estuary represents a boundary between rivers and the sea, but there has been no attempt to fit empirical data for estuaries to these boundary models. An extensive data set from the Thames estuary was analysed using multivariate techniques and species-range analysis, in order to investigate whether the ecocline or the ecotone model was most relevant to this estuary. Data for periods of high and low freshwater flow allowed the impact of large-scale fluctuations implicit in both models to be determined.A continuum of assemblages existed along the salinity gradient from freshwater river to the North Sea, with shifts in the ranges of organisms apparent in response to changes in freshwater flow. This pattern closely fits an ecocline model. However, the estuary differs from previously defined ecoclines in having two overlapping gradients in the major stressor: from river to mid-estuary for freshwater species and from sea to mid-estuary for marine species. We propose, therefore, that the estuary represents a two-ecocline model, with fauna inhabiting the mid-estuary being either freshwater or marine species at the edge of their range, rather than ‘ true estuarine organisms ’. This allows a redefinition of the Remane diagram, with estuarine species removed, and supports previous arguments that brackish-water species do not exist. Such two-ecocline models may also exist in other marine systems, such as rocky shores.  相似文献   
2.
The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m− 2 d− 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after  30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L− 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom–flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m− 2 d− 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June–August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7–5.0 μm ‘flagellate’ fraction of the phytoplankton community with grazing rates up to 178% of ‘flagellate’ growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.  相似文献   
3.
Investigations in quarry exposures in the Asheldham Gravel and related deposits of southeast Essex are described. Section logging, mapping and borehole investigations are supported by clast lithological, heavy and clay mineralogical determinations. The sediments are derived from reworking of local Thames basin materials, fine sediment being predominantly from the London Clay. The sequence is shown to represent an aggradation that began as the fluvial infilling of the River Medway valley. The River Thames, diverted into this valley by glaciation further west, overwhelmed the Medway, reworking the deposits. The valley was subsequently drowned and fine laminated lake sediment was initially deposited. This was during a period when the valley was drowned by the glacial lake ponded in the southern North Sea basin by the Anglian/Elsterian ice sheet. Progradation by a braid-delta complex advanced along the valley and subsequently fluvial deposition returned. Valley widening and straightening accompanied the delta progradation. The deposits were dissected by deep fluvial valleys infilled by Hoxnian interglacial sediments. The Asheldham Gravel is therefore placed in the Anglian/Elsterian Stage.  相似文献   
4.
Modelling of uplift histories in the Upper and Middle Thames valleys has revealed an important difference, in the form of additional early post-Anglian uplift in the Middle Thames, attributed to an Anglian (~ 440 ka) glacio-isostatic effect. Terraces in the Upper Thames around Oxford seem unaffected by glacio-isostasy and their heights show regional uplift of ~ 35–40 m since the Anglian. The result of the glacio-isostasy is that Anglian terraces are significantly higher above the valley floor in the Middle Thames (up to 55 m) than in the Upper Thames. Recognition of this displacement of Middle Thames terraces has solved long-standing problems of correlation between this area and the Upper Thames: the pre-Anglian (Cromerian Complex) age of the Sugworth Channel deposits, indicated by biostratigraphy, is no longer a difficulty, whereas the Hanborough Terrace is now thought to be of Anglian age, albeit incorporating pre-Anglian faunal remains and perhaps with a significant early post-Anglian component. These findings have implications for the understanding of the effects of Middle Pleistocene glacio-isostasy and of landscape evolution on the periphery of glaciated regions.  相似文献   
5.
Intertidal zones by definition are exposed to air at low tide, and the exposure duration can be weeks (e.g. during neap tides) depending on water level and bed elevation. Here we investigated the effect of varying exposure duration (6 h to 10 days) on intertidal mudflat erosion (measured using the EROMES device), where the effects of water content and biofilm biomass (using chlorophyll-a content as a proxy, Chl-a μg g−1) were taken into account. Sediments were collected between spring and summer (in October 2018, January 2019 and February 2019) from an intertidal site in the Firth of Thames, New Zealand. Longer exposure duration resulted in more stable sediments [higher erosion threshold (Ƭcr, N m−2) and lower erosion rate (ER, g m−2 s−1)]. After 10 days, exposure increased Ƭcr by 1.7 to 4.4 times and decreased ER by 11.6 to 21.5 times compared with 6 h of exposure. Chl-a and water content changed with exposure duration and were significantly correlated with changes in Ƭcr and ER. The stability of sediments after two re-submersion periods following exposure was also examined and showed that the stabilizing effect of exposure persisted even though water content had increased to non-exposure levels. Re-submersion was associated with an increase in Chl-a content, which likely counteracted the destabilizing influence of increased water content. A site-specific model, which included the interplay between evaporation and biofilm biomass, was developed to predict water content as a function of exposure duration. The modelled water content (WMod.) explained 98% of the observed variation in water content (WObs.). These results highlight how the exposure period can cause subtle changes to erosion regimes of sediments. An understanding of these effects (e.g. in sediment transport modelling) is critical to predicting the resilience of intertidal zones into the future, when sea-level rise is believed to exacerbate erosion in low-lying areas. © 2020 John Wiley & Sons, Ltd.  相似文献   
6.
The Thame is one of the principal left-bank affluents of the Thames, the largest river in southern England; it joins the Upper Thames at Dorchester, ∼20 km downstream of Oxford. Its terraces include a younger group of four, which date from the late Middle Pleistocene and Late Pleistocene, are disposed subparallel to the modern river, and represent drainage within the modern catchment. At higher levels there are three older terraces, the Three Pigeons, Tiddington and Chilworth terraces, which are assigned to MIS 16, 14 and 12. With much gentler downstream gradients, these are fragmentary remnants of much more substantial fluvial deposits, indicating a much larger river that was disrupted by the Anglian (MIS 12) glaciation. This interpretation supersedes an earlier view that the glacigenic deposits in the Thame headwaters correlate with the Blackditch terrace, the highest of the younger group, which has hitherto provided an argument that the glaciation in this region occurred in MIS 10. It is suggested that the headwaters of the pre-Anglian ‘Greater Thame’ river were located near Northampton and that the Milton Sands of that area represent an upstream counterpart of the Chilworth terrace deposits. It is envisaged that this early Middle Pleistocene drainage geometry, located between the Jurassic limestone and Chalk escarpments, developed as a result of the increase in uplift rates that followed the Mid-Pleistocene Revolution (MPR). It is suggested that before this time, including during the Early Pleistocene, the modern Thame catchment and adjacent regions drained southeastward through the Chalk escarpment, but these small rivers lacked the erosional power to cut through the Chalk in pace with the faster uplift occurring in the early Middle Pleistocene, and so became diverted to the southwest, subparallel to the Chalk escarpment, to form the pre-Anglian ‘Greater Thame’ tributary of the Upper Thames. The post-MPR uplift is estimated to decrease northwestward from 90 m in the Middle Thames to 75 m near the Thame-Thames confluence and to 65 m upstream of Oxford. The post-Anglian (post-450 ka) component of uplift decreases northward from 33 m near the Thame-Thames confluence to an estimated ∼20 m in the Northampton area; the relative stability of the latter area makes feasible the proposed correlation between the Milton Sands and the pre-Anglian River Thame. Limited post-Anglian uplift in the Northampton area is also inferred from the upstream convergence of the terraces of the modern rivers Nene and Great Ouse. These observed lateral variations in vertical crustal motions reflect lateral variations in crustal properties (including heat flow, crustal thickness, and thickness of underplating at the base of the crust) that are known independently. This study thus provides, for the first time, an integrated explanation of the Pleistocene drainage development across a large region of central-southern England.  相似文献   
7.
Subtidal changes of the level of the River Thames are examined over the period September–October 1973. Almost 98% of the total subtidal variance can be accounted for by a spatial mode describing uniform changes of level at all tide gauges. This mode is due to changes of the level of the southern North Sea into which the River Thames flows. The remaining 2% of total variance can be almost completely described by a tilting of level. This tilting is partly due to a delay in the response of the river to elevation changes at the mouth and partly to the effect of local wind. The effect of local wind could cause the level at Greenwich to differ from that at Southend by as much as 35 cm.  相似文献   
8.
The Thames Embankment and the disciplining of nature in modernity   总被引:1,自引:0,他引:1  
The embanking of the Thames was an emblematic stage in the construction of modernity's discourse of 'the natural', re-engineering the river as a concrete framing of nature between the embankment walls and a representational framing of the natural within an engineering ideology. The legitimacy of embanking's control was, therefore, about both physical mechanisms and a particular discourse of the natural, but the Thames embankments did not merely reflect modernity's discourse - they actively helped mould it. The creation of a discourse of embanking was slow and hesitant, the product of the interplay between the subsidiary discourses of urban improvement and sanitarianism, and an opposing discourse of tradition. When built, the embankments acted as a fixed, ordered boundary between the cultured nature of the drained, commodified land, and the regulated liveliness of the river. They acted literally and figuratively to sever culture from a nature that was enclosed and tamed by embankment walls.  相似文献   
9.
Robert L. Wilby 《水文研究》2005,19(16):3201-3219
Despite their acknowledged limitations, lumped conceptual models continue to be used widely for climate‐change impact assessments. Therefore, it is important to understand the relative magnitude of uncertainties in water resource projections arising from the choice of model calibration period, model structure, and non‐uniqueness of model parameter sets. In addition, external sources of uncertainty linked to choice of emission scenario, climate model ensemble member, downscaling technique(s), and so on, should be acknowledged. To this end, the CATCHMOD conceptual water balance model was used to project changes in daily flows for the River Thames at Kingston using parameter sets derived from different subsets of training data, including the full record. Monte Carlo sampling was also used to explore parameter stability and identifiability in the context of historic climate variability. Parameters reflecting rainfall acceptance at the soil surface in simpler model structures were found to be highly sensitive to the training period, implying that climatic variability does lead to variability in the hydrologic behaviour of the Thames basin. Non‐uniqueness of parameters for more complex model structures results in relatively small variations in projected annual mean flow quantiles for different training periods compared with the choice of emission scenario. However, this was not the case for subannual flow statistics, where uncertainty in flow changes due to equifinality was higher in winter than summer, and comparable in magnitude to the uncertainty of the emission scenario. Therefore, it is recommended that climate‐change impact assessments using conceptual water balance models should routinely undertake sensitivity analyses to quantify uncertainties due to parameter instability, identifiability and non‐uniqueness. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
10.
Chick  L. M.  De Lange  W. P.  Healy  T. R. 《Natural Hazards》2001,24(3):309-318
Geophysical data have identified four submarine segments of the Kerepehi Fault, roughly bisecting a back-arc rift (Hauraki Rift). These segments have been traced through the shallow waters of the Firth of Thames, which lies at the southern end of the Hauraki Gulf, New Zealand. No historical or paleotsunami data are available to assess the tsunami hazard of these fault segments.Analysis of the fault geometry, combined with paleoseismic data for three further terrestrial segments of the Fault, suggest Most Credible Earthquake (MCE) moment magnitudes of 6.5–7.1. Due to the presence of thick deposits of soft sediment, and thesemi-confined nature of the Firth, the MCE events are considered capable of generating tsunami or tsunami-like waves. Two numerical models (finite element and finite difference), and an empirical method proposed by Abe (1995), were used to predict maximum tsunami wave heights. The numerical models also modelled the tsunami propagation.The MCE events were found not to represent a major threat to the large metropolitan centre of Auckland City (New Zealand's largest population centre). However, the waves were a threat to small coastal communities around the Firth, including the township of Thames, and 35,000 ha of low-lying land along the southern shores of the Firth of Thames.The Abe method was found to provide a quick and useful method of assessing the regional tsunami height. However, for sources in water depths < 25 m the Abe method predicted heights 2–4 times larger than the numerical models. Since the numerical models were not intended for simulating tsunami generation in such shallow water, the Abe results are probably a good guide to the maximum wave heights.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号