首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  国内免费   4篇
大气科学   11篇
地球物理   2篇
海洋学   1篇
自然地理   1篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
次网格地形坡度坡向参数化及其对区域气候模拟的影响   总被引:8,自引:2,他引:8  
朱新胜  张耀存 《高原气象》2005,24(2):136-142
随着数值模式水平分辨率的提高,模式下垫面特征的描述更加仔细,针对东亚地区复杂的地形和植被特征,发展适合非均匀下垫面的地表通量参数化方案,对改进数值模式和刻画高原附近地区复杂地形动力和热力。效应的能力非常必要。本文通过计算次网格地形坡度、坡向参数及其对到达地面短波辐射通量的影响,提出次网格地形热力效应的参数化方案,改进数值模式中复杂地形区域地面热量平衡的计算。利用p—σ区域气候模式的数值试验结果表明,次网格地形热力效应参数化方案的引入,对东亚地区夏季气候尤其是降水的模拟有明显的改进。  相似文献   
2.
Reduced complexity strategies for modelling urban floodplain inundation   总被引:2,自引:1,他引:2  
Significant advances in flood inundation modelling have been made in the last decade through the use of a new generation of 2D hydraulic numerical models. These offer the potential to predict the local pattern and timing of flood depth and velocity, enabling informed flood risk zoning and improved emergency planning. With the availability of high resolution DEMs derived from airborne lidar, these models can theoretically now be routinely parameterized to represent considerable topographic complexity, even in urban areas where the potential exists to represent flows at the scale of individual buildings. Currently, however, computational constraints on conventional finite element and volume codes typically require model discretization at scales well below those achievable with lidar and are thus unable to make optimal use of this emerging data stream.In this paper we review two strategies that attempt to address this mismatch between model and data resolution in an effort to improve urban flood forecasts. The first of these strives for a solution by simplifying the mathematical formulation of the numerical model by using a computationally efficient 2D raster storage cell approach coupled to a 1D channel model. This parsimonious model structure enables simulations over large model domains offering the opportunity to employ a topographic discretization strategy which explicitly represents the built environment. The second approach seeks to further reduce the computational overhead of this raster method by employing a subgrid parameterization to represent the effect of buildings and micro-relief on flow pathways and floodplain storage. This multi-scale methodology enables highly efficient model applications at coarse spatial resolutions while retaining information about the complex geometry of the built environment.These two strategies are evaluated through numerical experiments designed to reconstruct a flood in the small town of Linton in southern England, which occurred in response to a 1 in 250 year rainfall event in October 2001. Results from both approaches are encouraging, with the spatial pattern of inundation and flood wave propagation matching observations well. Both show significant advantages over a coarse resolution model without subgrid parameterisation, particularly in terms of their ability to reproduce both hydrograph and inundation depth measurements simultaneously, without need for recalibration. The subgrid parameterization is shown to achieve this without contributing significant computational complexity and reduces model run-times by an order of magnitude.  相似文献   
3.
A new and general approach is presented to allow standard subgrid schemes to besuitable both for surface layer and free-stream turbulence. Simple modificationsto subgrid schemes are proposed and derived for any vertical stabilityconditions. They are simple to implement in models and are suitable for morecomplicated simulations such as large-eddy simulation with inhomogeneoussurface conditions or complex topography. They are also applicable to mesoscaleand large-scale models. These modifications are physically justified by recentmeasurements of spectra close to the ground. The spectral analysis presentedshows how the energy deficit of blocked turbulence for a given dissipation(`anomalous dissipation') dramatically affects the coefficients to be used insubgrid schemes. As shown for neutral and convective cases with wind shear,these changes allow us to substantially improve the prediction of profiles for themean quantities in the surface layer. Agreement with similarity laws in the unstablecase is found up to about 0.2zi, for simulated shear, stabilityprofiles and dissipation rates of turbulent kinetic energy.  相似文献   
4.
Large-eddy simulation and Lagrangian stochastic dispersion models were used to study heavy particle dispersion in the convective boundary layer (CBL). The effects of various geostrophic winds, particle diameters, and subgrid-scale (SGS) turbulence were investigated. Results showed an obvious depression in the vertical dispersion of heavy particles in the CBL and major vertical stratification in the distribution of particle concentrations, relative to the passive dispersion. Stronger geostrophic winds tended to increase the dispersion of heavy particles in the lower CBL. The SGS turbulence, particularly near the surface, markedly influenced the dispersion of heavy particles in the CBL. For reference, simulations using passive particles were also conducted; these simulation results agreed well with results from previous convective tank experiments and numerical simulations.  相似文献   
5.
An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer   总被引:2,自引:27,他引:2  
Results are presented from the first intercomparison of large-eddy simulation (LES) models for the stable boundary layer (SBL), as part of the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study initiative. A moderately stable case is used, based on Arctic observations. All models produce successful simulations, in as much as they generate resolved turbulence and reflect many of the results from local scaling theory and observations. Simulations performed at 1-m and 2-m resolution show only small changes in the mean profiles compared to coarser resolutions. Also, sensitivity to subgrid models for individual models highlights their importance in SBL simulation at moderate resolution (6.25 m). Stability functions are derived from the LES using typical mixing lengths used in numerical weather prediction (NWP) and climate models. The functions have smaller values than those used in NWP. There is also support for the use of K-profile similarity in parametrizations. Thus, the results provide improved understanding and motivate future developments of the parametrization of the SBL.  相似文献   
6.
A subgrid-scale parameterization scheme motivated by statistical closure theory, but employing statistics obtained from high-resolution direct numerical simulations, is applied to large eddy simulations of two-level quasigeostrophic turbulence on the sphere. It is shown that these parameterizations are consistent with the phenomenology of quasigeostrophic turbulence. The parameterizations consist of 2 × 2 dissipation and stochastic forcing covariance matrices at each wavenumber, with the off-diagonal elements of the matrices representing vertical mixing. Two flow regimes, characterized by their deformation scales, are considered, namely atmospheric and oceanic. In the former, the deformation scale is fully resolved, and the truncation scale is within the enstrophy cascading interial range. In the latter, the deformation scale is not fully resolved, and the truncation scale is within the energy cascading inertial range. It is demonstrated through numerical experiments that both stochastic and deterministic variants of the scheme give comparable results for the energy spectra in the atmospheric regime. In the oceanic regime, the stochastic variant again gives excellent results, but the deterministic variant is found to be numerically unstable.  相似文献   
7.
刘波  李阳春  徐永福  范广洲 《大气科学》2015,39(6):1149-1164
本文选用中国科学院大气物理研究所全球海洋模式(LICOM),对中尺度涡旋参数化方案(GM90方案)中等密度扩散系数和等密度面厚度扩散系数(统称为涡旋扩散系数Aρ)对物理场及CFC-11(一氟三氯甲烷)分布的影响进行了研究。本文做了两个试验,即涡旋扩散系数采用常系数方式(对照试验)和采用在非绝热层以下Aρ随海洋浮力频率垂直变化的参数化方案(浮力试验)。模拟结果表明,依浮力频率垂直变化的方案对模式物理场的模拟能力有一定程度的提升,如南极绕极流的输送强度比常系数方案增大了约20%~30%,与观测事实更接近;浮力试验对对照试验中过强的南极中层水有一定的削弱作用,使得模式对南大洋高纬次表层位密度的模拟有一定的改善。稍有不足的是,浮力试验对南极底层水也有一定的削弱,使得2000~3000 m深度位密度模拟较常系数方案偏低。通过对CFC-11分布、存储以及输送的研究发现,次网格参数取值的不同对南大洋CFC-11模拟情况有较大影响。浮力试验加大了南北高纬CFC-11海表的吸收通量,对南极大陆周边海域向南大洋主储藏区(34°S~60°S)的CFC-11输送能力有一定的增强,使得南大洋对CFC-11储藏量增大,大部分海区与观测资料更接近。通过CFC-11断面分析,浮力试验对南大洋上层海洋位密度模拟的改善使得CFC-11垂直结构与观测更接近。  相似文献   
8.
The Finite Element Ocean circulation Model (FEOM) is applied to study the sensitivity of density driven overflows to the vertical discretization and bottom topography representation using the dynamics of overflow mixing and entrainment (DOME) setup. FEOM allows for hybrid grids combining σ, z + σ, full cell, partly shaved cell and fully shaved cell grids within the same numerical kernel thus isolating as far as possible effects of mesh geometry from those of model numerics. The sensitivity of diapycnal mixing, entrainment, plume thickness and plume meridional distribution to vertical discretization and partly to the subgrid process parameterization is explored. It is shown that simulations on pure σ grids or the combination of z + σ resolve the overflow processes best in terms of downslope plume propagation, plume thickness and dilution, and also have the least resolution dependence. Grids using z-levels generate excessive spurious mixing when resolution is insufficient. Applying partial cells improves the plume representation, but still requires higher horizontal and vertical resolution to converge to the σ grid results. It is demonstrated that increasing lateral viscosity causes the plume thickness to reduce whereas increasing lateral diffusivity has opposite effect. When keeping the Prandtl number constant, the increase in diffusivity and viscosity leads to an increase in mixing and plume thickness on z-level grids and also on σ-grids when lateral dissipation is oriented along geopotential surfaces. Using the along σ- diffusion helped to obtain correct plume thickness and entrainment on σ grids. Increasing the vertical mixing coefficients leads to an increase in diapycnal mixing and in downslope penetration as well.  相似文献   
9.
We present a derivation of a stochastic model of Navier Stokes equations that relies on a decomposition of the velocity fields into a differentiable drift component and a time uncorrelated uncertainty random term. This type of decomposition is reminiscent in spirit to the classical Reynolds decomposition. However, the random velocity fluctuations considered here are not differentiable with respect to time, and they must be handled through stochastic calculus. The dynamics associated with the differentiable drift component is derived from a stochastic version of the Reynolds transport theorem. It includes in its general form an uncertainty dependent subgrid bulk formula that cannot be immediately related to the usual Boussinesq eddy viscosity assumption constructed from thermal molecular agitation analogy. This formulation, emerging from uncertainties on the fluid parcels location, explains with another viewpoint some subgrid eddy diffusion models currently used in computational fluid dynamics or in geophysical sciences and paves the way for new large-scales flow modeling. We finally describe an applications of our formalism to the derivation of stochastic versions of the Shallow water equations or to the definition of reduced order dynamical systems.  相似文献   
10.
In recent years field experiments have been undertaken in the lower atmosphere to perform a priori tests of subgrid-scale (SGS) models for large-eddy simulations (LES). The experimental arrangements and data collected have facilitated studies of variables such as the filtered strain rate, SGS stress and dissipation, and the eddy viscosity coefficient. However, the experimental set-ups did not permit analysis of the divergence of the SGS stress (the SGS force vector), which is the term that enters directly in the LES momentum balance equations. Data from a field experiment (SGS2002) in the west desert of Utah, allows the calculation of the SGS force due to the unique 4 × 4 sonic anemometer array. The vector alignment of the SGS force is investigated under a range of atmospheric stabilities. The eddy viscosity model is likely aligned with the measured SGS force under near-neutral and unstable conditions, while its performance is unsatisfactory under stable conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号