首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   4篇
自然地理   1篇
  2011年   1篇
  2009年   1篇
  2006年   2篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
In desert environments with low water and salt contents, rapid thermal variations may be an important source of rock weathering. We have obtained temperature measurements of the surface of rocks in hyper-arid hot and cold desert environments at a rate of 1/s over several days. The values of temperature change over 1-second intervals were similar in hot and cold deserts despite a 30 °C difference in absolute rock surface temperature. The average percentage of the time dT/dt > 2 °C/min was ~ 8 ± 3%, > 4 °C/min was 1 ± 0.9%, and > 8 °C/min was 0.02 ± 0.03%. The maximum change over a 1-second interval was ~ 10 °C/min. When sampled to simulate data taken over intervals longer than 1 s, we found a reduction in time spent above the 2 °C/min temperature gradient threshold. For 1-minute samples, the time spent above any given threshold was about two orders of magnitude lower than the corresponding value for 1-second sampling. We suggest that a rough measure of efficacy of weathering as a function of frequency is the product of the percentage of time spent above a given threshold value multiplied by the damping depth for the corresponding frequency. This product has a broad maximum for periods between 3 and 10 s.  相似文献   
2.
黄土边坡剥落病害影响黄土边坡的坡面稳定及环保美观.以黄延高速公路黄土路堑边坡剥落病害为背景,采用现场调查结合理论分析的方法,研究了黄土边坡剥落病害的发育特征;将发育特征与可拓工程方法相结合,实现了黄土边坡剥落病害发育程度的评价.研究结果表明:(1)黄土中节理裂隙分布密度大于6条·m-1时,极易发生剥落,小于2条·m-1...  相似文献   
3.
Spalling is a wave-induced dynamic fracture phenomenon. The waves can be either one: elastic, elasto-plastic, or shock waves. From a continuum mechanics point of view, fracture mechanics and wave propagation form the main ingredients in the formation of spalls. Recently, however, micro-structural effects have become important in the initial stages of spall formation in a variety of engineering materials ranging from metals to rock and concrete. From a structural geology point of view, the rock mass cannot be modelled as a continuum. In this case, a discontinuum approach has to be taken where the individual features of the rock mass such as joints and faults need to be taken into account. From an application point of view, spallation is important where rapid loading by explosives, impact, or energy deposition, occurs. The range of applications stretches from blasting in mining engineering to damage prevention to structures under explosive excitation.

This contribution offers a multi-faceted and multi-disciplinary approach to the study of spalling with special attention to analytical and experimental work. The reader is assumed to be somewhat familiar with the basics of continuum mechanics, fracture mechanics, and propagation of elastic, plastic and shock waves. The application to rock and concrete will show the effects of structural geological discontinuities such as open and closed joints - and to some degree also faulting - in rock, as well as the micro-structure of concrete on the (shock) wave field.

Extensive use will be made of time-space diagrams which proved very useful in practical applications to blasting problems [Rossmanith, H.P., 2002, The use of Lagrange diagrams in precise initiation blasting. Part I: two interacting blastholes, Fragblast 6, 104-136].  相似文献   
4.
This contribution is the third part of a paper addressing size and boundary effects on explosively induced wave propagation, fracturing and fracture pattern development in small scale laboratory specimens, which are frequently used for model blast tests. Small cylindrical and block type specimens fabricated from concrete, sandstone and amphibolite are centre-line loaded by linear explosive charges and supersonically detonated. Using shock wave theory, elastic wave propagation theory, and fracture mechanics it is shown that the type of boundary conditions prescribed at the outer boundary of the cylinder controls the extension of stem cracking and the development of the fragmentation pattern within the body of the cylinder and the cube specimens. In the case of a composite specimen, where a cylindrical core of different material is embedded in a cylinder or in a cube, the level of fracturing and fragmentation is controlled by the conditions and possible de-lamination of the interface which, in turn, depends on the relative dimensions of the core and the block. Using known results from the theory of wave interaction with free boundaries and interfaces it will be shown that the fracture strain and the notch sensitivity of the material expressed by imperfections play an important role. Equally important is the ratio between the length of the pulse (space-wise or time-wise) and the characteristic dimensions of the models. Axi-radial boundary cracks and spalling will be explained on the basis of earlier wave propagation studies associated with supersonic blasting. Theoretical results are in good agreement with numerical simulations and recent experimental findings.  相似文献   
5.
引水隧洞工程中热应力对围岩表层稳定性的影响分析   总被引:2,自引:0,他引:2  
岩石中的热应力作用,是岩石热学问题中的一个重要研究内容。热应力由温度变化造成,温度的周期性变化引起热应力的周期性变化,热应力周期性作用导致岩石的疲劳破坏。以雅砻江锦屏水电站深埋引水隧洞为例,分析隧洞围岩温度场的分布特征,根据热应力交变作用特点,提出岩石的疲劳破坏判据,并利用这个判据分析热应力作用下隧洞围岩表层的破坏特点。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号