首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   1篇
地球物理   4篇
地质学   2篇
海洋学   1篇
自然地理   8篇
  2022年   1篇
  2019年   2篇
  2015年   2篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2001年   1篇
排序方式: 共有15条查询结果,搜索用时 37 毫秒
1.
The surface morphology of the transgressive dunefield barrier extending from Itapeva to Tramandai along the northern littoral of Rio Grande do Sul, is examined and an attempt is presented to link morphological changes across the barrier to Holocene sea level changes. The 4·5 km wide Holocene barrier displays two typical morphologies: an inner part dominated by large‐scale, continuous alongshore, overlapping dunefield phases comprising sand sheets, dunes, deflation plains and precipitation ridges; and an outer part dominated by discontinuous, medium‐ to small‐scale, triangular to lobate transgressive dunefield phases, cut by both active and relict (palaeo‐) creeks or washouts. Holocene sea level in the region rose to c. +1 to +3 m above present reaching a maximum around 5100 years bp and then progressively fell to the present level. We argue that the effect on barrier development was to suppress the development of a drainage system during the rising and maximum stages, and encourage the development of an organized drainage system in the form of regularly spaced washouts during the falling period, and that this change in sea level from rising to falling therefore produced the large‐scale differences in barrier morphology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
2.
By viewing satellite imagery, a striking large-scale dunefield can be clearly perceived, with a size of nearly 63 km long and 11 km wide, and trending NE–SW, on the right flank of the lower Laoha River, Northeast China. By means of remote sensing imagery analysis and field observation as well as a comparison with a small-scale dunefield on the right flank of the lower Xiangshui River, analogous to the case of the lower Laoha River, this paper presents a new mechanism for its origin and development. The results show that:(1) the large-scale dunefield bears a tile-style framework overwhelmingly composed of transverse barchanoid ridges perpendicular to the predominant winds, and inlaid diverse blowouts.(2) The small-scale dunefield, referred to as a primary structural unit of the large one, is typical of an incipient dunefield, following the same rules of evolution as the larger.(3) A succession of barchanoid ridge chains can steadily migrate downwind in much the same manner as surface wave propagation in air or water stimulated by an incised valley, and ultimately tend to bear roughly the same wavelength and amplitude under stable climate and hydrologic regimes.(4) The first ridge chain acquires its sand source substantially from the downwind escarpments exposing the loose Quaternary sandy sediments to the air, while the ensuing ridges derive their sands dominantly from in situ deflation of the underlain Quaternary loose sandy sediments in blowouts, partly from the upwind ridges through northern elongated horns. Theoretically, the sands from riparian escarpments can be transported by wind to the downwind distal end of a dunefield after sufficient long duration.(5) The lower Laohahe region experienced probably three significant climatic changes in the past, corresponding to the three active dune belts, suggesting that once a large-scale dunefield occurs, it is nearly impossible to be completely stabilized, at least in its central portions. At present, seasonal shrinkage and stagnation of the lower Laoha River, widespread farming and afforestation in the valley, and establishing windbreaks downwind of the valley as well as surrounding the dunefield, appear to have significantly modified local flow fields and sand sources, engendering significant degradation of the dunefield.  相似文献   
3.
Great Victoria Desert: Development and sand provenance   总被引:1,自引:0,他引:1  
Sands of the Great Victoria Desert, south‐central Australia, can be divided into three main groups on the basis of their physical and chemical characteristics (colour, grainsize parameters, mineralogy of heavy‐mineral suites, quartz oxygen isotopic composition, zircon U–Pb ages). The groups occupy the western, central and eastern Great Victoria Desert respectively, boundaries between them corresponding approximately to changes in the underlying rocks associated with the Yilgarn Craton to Officer Basin to Arckaringa Basin. Several lines of evidence suggest derivation of the sands mainly from local bedrock with very little subsequent aeolian transport. Ultimate protosources for the sands, each in order of importance, are: western Great Victoria Desert—Yilgarn Craton, Albany‐Fraser Orogen, Musgrave Complex; central Great Victoria Desert—Musgrave Complex; eastern Great Victoria Desert—Gawler and Curnamona Blocks, Adelaide Geosyncline, Musgrave Complex. Sediment from the Adelaide Geosyncline includes in addition an ‘exotic’ component from Palaeozoic sedimentary rocks probably derived mainly from Antarctica. Sediment transport of several hundred kilometres from these protosources to the sedimentary basins was dominantly by fluvial, not aeolian, means. Post‐Tertiary aeolian transport or reworking has been minimal, serving only to shape sand eroded from underlying sedimentary rocks or residual products of local basement weathering into the current dunes.  相似文献   
4.
This paper draws on recent optically stimulated luminescence (OSL) dating to evaluate the long‐held assumption that dust accumulation rates in the Loess Plateau and the extent of active aeolian sand in the dunefields to the north have varied together over time, because both are controlled by the strength of the Asian monsoons and also possibly because the dunefields are proximal loess sources. The results show there is little evidence that high rates of loess accumulation coincided with well‐dated episodes of extensive dune activity in the Mu Us, Otindag, and Horqin dunefields, at 11–8 ka and 1–0 ka. Explanations for the apparent lack of coupling include local variation in the trapping of dust and post‐depositional preservation of the loess and dune sediments, in response to varying local environmental conditions. In addition, a substantial portion of the loess may be transported directly from source areas where dust emission has somewhat different climatic and geomorphic controls than aeolian sand activity within the dunefields. The results of this study cast doubt on the use of loess accumulation rate as a palaeoclimatic proxy at millennial timescale. The dunefield and loess stratigraphic records are interpreted as primarily recording changes in effective moisture at a local scale, but the timing of late Quaternary dune activity, along with a variety of other evidence, indicates that moisture changes in many of the drylands of northern China may not be in phase with precipitation in core regions of the Asian monsoons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
5.
This paper presents a case study on the modelling of a headland bay beach influenced by sediment input from migrating coastal dunes. The study area is the region around the town of Ingleses on Santa Catarina Island, Santa Catarina state, South-Eastern Brazil. Ingleses has been threatened by nature at two different fronts. At the north-eastern side of the town lies Ingleses Beach, a headland bay beach which seems to be subject to persistent erosion in recent years. On the south-western side the town is threatened by a migrating dunefield, which is encroaching onto houses and infrastructure, but which has not reached the beach in the past 70 years. A second dunefield in the area does not pose a direct threat to the town, but passes it on the eastern side and forms an important influence on the development of the beach. The sediment influx rate from this dunefield to the beach is 10,000 m3/year. To investigate the effect of the dunefields on the morphodynamic system, a numerical model has been created using the software packages SWAN and UNIBEST and the static equilibrium bay shape was determined by the software package MEPBAY. The result of the long-term scenario as predicted by UNIBEST agrees rather well with the static equilibrium bay shape found with MEPBAY. This provides sounds basis for the credibility of both models. Consequently, the predicted evolutional trend of the shoreline seems plausible.  相似文献   
6.
The stratigraphy and landscape evolution of the Lodbjerg coastal dune system record the interplay of environmental and cultural changes since the Late Neolithic. The modern dunefield forms part of a 40 km long belt of dunes and aeolian sand‐plains that stretches along the west coast of Thy, NW Jutland. The dunefield, which is now stabilized, forms the upper part of a 15–30 m thick aeolian succession. The aeolian deposits drape a glacial landscape or Middle Holocene lake sediments. The aeolian deposits were studied in coastal cliff exposures and their large‐scale stratigraphy was examined by ground‐penetrating radar mapping. The contact between the aeolian and underlying sediments is a well‐developed peaty palaeosol, the top of which yields dates between 2300 BC and 600 BC . Four main aeolian units are distinguished, but there is some lateral stratigraphic variation in relation to underlying topography. The three lower aeolian units are separated by peaty palaeosols and primarily developed as 1–4 m thick sand‐plain deposits; these are interpreted as trailing edge deposits of parabolic dunes that moved inland episodically. Local occurrence of large‐scale cross‐stratification may record the head section of a migrating parabolic dune. The upper unit is dominated by large‐scale cross‐stratification of various types and records cliff‐top dune deposition. The nature of the aeolian succession indicates that the aeolian landscape was characterized by alternating phases of activity and stabilization. Most sand transported inland was apparently preserved. Combined evidence from luminescence dating of aeolian sand and radiocarbon dating of palaeosols indicates that phases of aeolian sand movement were initiated at about 2200 BC , 700 BC and AD 1100. Episodes of inland sand movement were apparently initiated during marked climate shifts towards cooler, wetter and more stormy conditions; these episodes are thought to record increased coastal erosion and strong‐wind reworking of beach and foredune sediments. The intensity, duration and areal importance of these sand‐drift events increased with time, probably reflecting the increasing anthropogenic pressure on the landscape. The formation of the cliff‐top dunes after AD 1800 records the modern retreat of the coastal cliffs.  相似文献   
7.
This paper examines a seemingly anomalous situation in southern Brazil where the dunefields on Santa Catarina Island (e.g. Joaquina Beach) migrate to the NNW, almost completely the opposite direction (c. 160) to the dunefields immediately to the south (e.g. Pinheira Beach), and some much further to the north (e.g. Cabo Frio) which migrate to the SSW. A variety of mechanisms are examined to explain the differences in dunefield migration including grain size variations, topographic effects on local winds, shoreline orientation, and regional wind field changes. The mean grain sizes of the two beaches, Pinheira and Joaquina, are not sufficiently different to restrict aeolian sediment transport in either place, nor to account for a lack of transport from the NNE to the SSW in the case of Joaquina. Some topographic steering of the wind is likely but could not account for the long‐term average difference in migration trends of the island dunefields compared to the mainland dunefields. While the orientation of the shoreline to prevailing winds is an important control on beach and dune sediment transport, it is not the dominant controlling mechanism. An analysis of the regional wind patterns demonstrates that there is a major shift in the regional wind field near the island such that the dominant island winds blow from the SW/SSW while those further south blow from the NE. It is concluded that this is the predominant reason for the divergence in the direction of migration of the dunefields. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
8.
Understanding the historical activity of desert dune systems is important for identifying both the palaeoenvironmental drivers of change and the likelihood of future reactivation. Dating dune sediments in the Nebraska Sandhills has identified regional-scale dune activity over centennial and millennial timescales during the Holocene, occurring at 9.6–6.5, 3.8 and 2.5 ka, and most recently spanning the Medieval Climatic Anomaly 1050–650 years BP. These periods have been interpreted as palaeoclimatic evidence of intense aridity lasting decadal and centennial timescales. A detailed record of dune activity in the historical period, since EuroAmerican arrival, is lacking however, yet important for interpreting the role of human agency amongst the factors influencing disturbance. Without a high-resolution record of short-term, historical, local sediment mobilization, it is not possible to distinguish the environmental factor(s) responsible for local reactivation. In this paper, the individual drivers of vegetation disturbance are reviewed and presented alongside a luminescence-dated reconstruction of dune sediment deposition ages. This allows an integrated assessment of the relationship between drivers and environmental response over a recorded period. We focused our investigation on the aeolian reactivations of surface dune sediments and blowout features around the Niobrara Valley Preserve in the northern limits of the Nebraska Sandhills. Results show a near-continuous (within uncertainties) timeline of local reactivation across the sites studied, with variation between the individual features indicating that both regional (i.e. climatic) and local (i.e. land use) forcings contribute to surface disturbance. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
9.
韩广  尤莉  丁占良 《中国沙漠》2019,39(5):21-28
按照经典风沙物理学理论,横向沙丘下风侧由于气流分离会产生横轴涡旋,然而我们多年来在科尔沁沙地多处开展的沙丘群考察和观测中,经常观察到西北风天气条件下丘间走廊里发育着稳定的南向和西南向气流。为了解这种次生气流的基本特征,我们选择科尔沁沙地西部一片典型横向沙丘群,利用自动气象站进行了风季强风天气的风力观测。结果表明:(1)这种次生气流比较稳定,冬季基本以南风为主,春季以西南风为主;(2)风速会大幅度降低,幅度30%~50%;(3)冬季湍流强度明显小于春季,表明不同季节的局地大气层结状况影响丘间走廊的次生气流;(4)冬季的次生气流主要加深走廊底部,协助沙丘前移,而在春季除了加深走廊外,还促进了走廊的拓宽。  相似文献   
10.
Coastal dunefields have developed on the west coast of Jutland in Denmark over the past 5000 years. The dunefields are situated in a temperate climate zone with frequent high energy wind events. Dunefield development was characterized by repeated periods of transgressive dune formation punctuated by periods of dune stabilization and soil formation. The chronology of dunefield evolution is based on Accelerator Mass Spectrometry (AMS) radiocarbon dating of peaty palaeosols (24 samples) and Optically Stimulated Luminescence (OSL) dating of aeolian sand deposits (19 samples). These dates indicate that the completeness of the stratigraphic record varies considerably, but that the timing of aeolian activity events was identical in the dunefields examined here. Initiation of aeolian activity occurred around 2200 BC, 800 BC, AD 100, AD 1050–1200, and between AD 1550 and 1650. Proxy-climate data from bogs in southwestern Sweden suggest that these periods of dunefield activity were initiated during wet/cool summers. Most likely these climatic situations were associated with a more frequent passage of cyclones across Denmark in the summer seasons (increased storminess) causing aeolian sand movement and dune formation. The continued removal of vegetation in Jutland between 4000 BC and AD 1850 allowed the aeolian sand, when first activated, to move more and more easily across the coastal plains; the final phase of aeolian sand movement between AD 1550–1650 and 1900 had catastrophic implications for many coastal inhabitants in the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号