首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   3篇
自然地理   6篇
  2022年   1篇
  2015年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1991年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The Surai Khola section in southwest Nepal, a 5000 m continuously exposed record of fluvial sedimentation since Middle Miocene, was revisited for high-resolution magnetostratigraphy in sequences with expected cryptochrons and reversals of the geomagnetic field. Polarity intervals with durations of a few tens of thousands of years are recorded as zones of stable palaeomagnetic directions. Polarity transitions are recorded as zones with complex demagnetization behaviour of specimens in the sedimentary column. Almost antiparallel palaeoremanence directions, residing in different haematite phases in the same specimens, could generally not be separated properly by thermal demagnetization. Differing demagnetization paths for neighbouring specimens during a reversal suggest that measured transitional directions are not true geomagnetic field directions, but rather are generated by the superposition of variable amounts of at least two almost antiparallel components of magnetization. Accompanying studies of recent river sand deposits demonstrate that these sediments acquire a true depositional remanent magnetization (DRM) with considerable inclination errors and scattered directions for individual specimens.  相似文献   
2.
Elemental mobility based on major element geochemistry from 58 horizons related to six paleosols profiles in a typical Miocene — Pliocene Siwalik fluvial sequence in the NW Himalaya has been reported here. The paleosols developed over felsic parent material of fine to medium grained sandstone indicate notable enrichment of sesquioxides (Al2O3 = 29 % and Fe2O3 = 54 %) depicting significant leaching and dissolution. The depletion of base cations (mean wt% of Na2O = 0.24; CaO = 0.51) and SiO2 (mean wt% = 63.6) in the pedogenic layers and its enrichment in the parental material (mean wt% of Na2O = 0.44; CaO = 1.3; SiO2 = 70.1) shows a good gradient of elemental mobility due to pedogenesis. Bivariate plots of the base ratios (Na2O/K2O, CaO/K2O, and MgO/K2O) vs. Al2O3 reveal independent distribution for parent material, pedogenic horizons and the incipient zone indicating the gradual addition/removal of immobile/mobile elements with varying pedogenesis. Discontinuous and segmented pattern of the geochemical parameters enables discrimination of multiple pedogenic episodes and recognition of soil welding processes in the multistorey composite paleosols. We also test the applicability of the geochemical climofunctions: the Mean Annual Precipitation (MAP) and Mean Annual Temperature (MAT); that demands more data for calibration in the Siwalik paleosols.  相似文献   
3.
The Gohpur–Ganga section is located southwest of Itanagar, India. The study area and its adjacent regions lie between the Main Boundary Thrust (MBT) and the Himalayan Front Fault (HFF) within the Sub-Himalaya of the Eastern Himalaya. The Senkhi stream, draining from the north, passes through the MBT and exhibits local meandering as it approaches the study area. Here, five levels of terraces are observed on the eastern part, whereas only four levels of terraces are observed on the western part. The Senkhi and Dokhoso streams show unpaired terraces consisting of very poorly sorted riverbed materials lacking stratification, indicating tectonic activity during deposition. Crude imbrications are also observed on the terrace deposits. A wind gap from an earlier active channel is observed at latitude 27°04′42.4″ N and longitude 93°35′22.4″ E at the height of about 35 m from the present active channel of Senkhi stream. Linear arrangements of ponds trending northeast–southwest on the western side of the study section may represent the paleochannel of Dokhoso stream meeting the Senkhi stream abruptly through this gap earlier. Major lineament trends are observed along NNE–SSW, NE–SW and ENE–WSW direction. The Gohpur–Ganga section is on Quaternary deposits, resting over the Siwaliks with angular contact. Climatic changes of Pleistocene–Holocene times seem to have affected the sedimentation pattern of this part of the Sub-Himalaya, in association with proximal tectonism associated with active tectonic activities, which uplifted the Quaternary deposits. Older and younger terrace deposits seem to mark the Pleistocene–Holocene boundary in the study area with the older terraces showing a well-oxidized and semi-consolidated nature compared to the unoxidized nature of the younger terraces.  相似文献   
4.
5.
Abstract A multidisciplinary study was conducted on the section of the Siwalik Group sediments, approximately 5000 m thick, exposed along the Karnali River. Analysis of facies, clay mineralogy and neodymium isotope compositions revealed significant changes in the sedimentary record, allowing discussion of their tectonic or climatic origin. Two major changes within the sedimentary fill were detected: the change from a meandering to a braided river system at ca 9.5 Ma and the change from a deep sandy braided to a shallow sandy braided river system at ca 6.5 Ma. The 9.5‐Ma change in fluvial style is contemporaneous with an abrupt increase of ?Nd(0) values following a ?Nd(0) minimum. This evolution indicates a change in source material and erosion of Lesser Himalayan rocks within the Karnali catchment basin between 13 and 10 Ma. The tectonic activity along the Ramgarh thrust caused this local exhumation. By changing the proximity and morphology of relief, the forward propagation of the basal detachment to the main boundary thrust was responsible for the high gradient and sediment load required for the development of the braided river system. The change from a deep sandy braided to a shallow sandy braided river system at approximately 6.5 Ma was contemporaneous with a change in clay mineralogy towards smectite‐/kaolinite‐dominant assemblages. As no source rock change and no burial effect are detected at that time, the change in clay mineralogy is interpreted as resulting from differences in environmental conditions. The facies analysis shows abruptly and frequently increasing discharges by 6.5 Ma, and could be linked to an increase in seasonality, induced by intensification of the monsoon climate. The major fluvial changes deciphered along the Karnali section have been recognized from central to western Nepal, although they are diachronous. The change in clay mineralogy towards smectite‐/kaolinite‐rich assemblages and the slight decrease of ?Nd(0) have also been detected in the Bengal Fan sedimentary record, showing the extent and importance of the two major events recorded along the Karnali section.  相似文献   
6.
The magnetostratigraphy of five new sections through the Neogene Siwalik Group of Nepal is presented. Rock magnetic experiments and detailed thermal demagnetization experiments prove that haematite is the carrier of a primary DRM or a PDRM. After stepwise thermal demagnetization of specimens from all sections, directions of characteristic remanent magnetization were obtained. The results show a positive reversal test and exhibit inclination errors of about 20. Due to gaps in exposures and extremely variable demagnetization behaviour of the haematite-bearing sediments, the resulting polarity sequences are poorly defined for some parts of the sections. However, double-sampled parts of some sections yield similar results. A correlation with the Surai Khola section (Appel, Rösler & Corvinus 1991) is proposed, based on rock magnetic parameters. AMS results from three of the sections prove the existence of primary sedimentary magnetic fabrics in these sections with systematic orientations of minimum and maximum susceptibility axes. Correlation with a standard polarity timescale indicates that the ages of all new sections lie within the age limits of the Surai Khola section.  相似文献   
7.
The active growth of a fault-and-thrust belt in frontal zones of Himalaya is a prominent topographical feature, extending 2500 km from Assam to Pakistan. In this paper, kinematical analysis of frontal anticlines and spatial mapping of active faults based on geomorphological features such as drainage pattern development, fault scarps and uplifted Quaternary alluvial fans are presented. We analyse the geomorphic and hydrographic expressions of the Chandigarh and the Janauri active anticlines in the NW India Siwaliks. To investigate the morphological scenario during the folding process, we used spatial imagery, geomorphometric parameters extracted from digital elevation models and fieldwork. Folding between the Beas and Sutlej Rivers gives clear geomorphological evidence of recent fold growth, presumably driven by movements of blind thrust faults. Structural style within the Janauri and Chandigarh anticlines is highly variable (fault-propagation folds, pop-up structures and transfer faults). The approach presented here involves analysis of topography and drainage incision of selected landforms to detect growth of active anticlines and transfer faults. Landforms that indicate active folding above a southwest-dipping frontal thrust and a northeast-dipping back-thrust are described. Along-strike differences in ridge morphology are measured to describe the interaction of river channel patterns with folds and thrust faults and to define history of anticline growth. The evolution of the apparently continuous Janauri ridge has occurred by the coalescence of independent segments growing towards each other. By contrast, systematic drainage basin asymmetry shows that the Chandigarh anticline ridge has propagated laterally from NW to SE.  相似文献   
8.
A fossil-bearing locality near Padhri village, Dhok Pathan, 55 km away from the tehsil Dina, Jhelum District, in the Potwar Plateau, Middle Siwaliks, Punjab, northern Pakistan, is significantly rich in mammalian fossils. This site has provided an abundant mammalian fossil fauna of Late Miocene age from the Dhok Pathan Formation (Fm.). The recovered material belongs to four families: Equidae (horses), Rhinocerotidae (rhinos), Bovidae (cows), and Suidae (pigs). We discovered a new skull of hipparionine Hipparion theobaldi from this locality along with 22 specimens from the associated assemblage of fossil mammals. The recovered material includes seven other species: the aceratheriine Chilotherium intermedium, boselaphines Tragoportax punjabicus, Selenoportax vexillarius, Pachyportax latidens, the antelope Gazella lydekkeri and suinine Propotamochoerus hysudricus. The specimens are isolated teeth, fragments of maxilla, mandibles and horn cores. The Dhok Pathan Fm. is generally composed of claystone, siltstone and sandstone beds and, based on the mammalian fauna, the Padhri fossil locality is dated as Late Miocene. Thi99s formation was deposited in a subtropical paleoenvironment and the predominance of fossil bovids indicates extremely moist conditions with small but frequent standing water bodies.  相似文献   
9.
关于曾生存于中国的三趾马的起源问题,现今的多数学者已达成基本一致的观点,即中国的三趾马是分多次、由不同的地区迁入.早先即有学者认为发现于中国云南的三趾马与曾生存于南亚地区的西瓦利克三趾马存在关系,而经过近年来对产自云南禄丰的三趾马化石的详细研究,云南的三趾马为南亚西瓦利克三趾马类群的成员,并且是由南亚迁徙至云南.最近发现于中国甘肃临夏盆地的一件三趾马头骨表明,来自南亚的三趾马有可能途经云南,继续向北到达了甘肃.形态学和分支系统学分析还表明,西瓦利克三趾马类群在向中国的扩散过程中,逐渐演化出了多个新的分支类群.而促使南亚地区三趾马向中国扩散和演化的最大动力是环境变化.之前的学者根据古环境分析指出西瓦利克地区在晚中新世时期发生了由森林至草原的明显过渡,对西瓦利克三趾马肢骨做出的形态学比较分析很好地支持了这一观点.西瓦利克的三趾马在自身所在的森林环境向草原环境变化之时,一方面向中国迁徙,寻求更适宜的环境,另一方面开始朝适应草原环境的方向演化.显然后者的策略更加积极,且获得了更大的成功.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号