首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
  国内免费   2篇
地球物理   7篇
地质学   21篇
海洋学   2篇
自然地理   3篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2001年   2篇
  1994年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
This paper presents results of a small scale study that utilized particle-tracking techniques to evaluate transport of river water through an alluvial aquifer in a bank infiltration testing site in El Paso, Texas, USA. The particle-tracking survey was used to better define filtration parameters. Several simulations were generated to allow visualization of the effects of well placement and pumping rate on flow paths, travel time, the size of the pumping influence zone, and proportion of river-derived water and groundwater mixing in the pumping well. Simulations indicate that migration of river water into the aquifer is generally slow. Most water does not arrive at the well by the end of an 18-day pumping period at 0.54 m3/min pumping rate for a well located 18 m from the river. Forty-four percent of the water pumped from the well was river water. The models provided important information needed to design appropriate sampling schedules for bank filtration practices and ensured meeting adequate soil-retention times. The pumping rate has more effect on river water travel time than the location of the pumping well from the river. The examples presented in this paper indicate that operating the pumping well at a doubled distance from the river increased the time required for the water to travel to the well, but did not greatly change the capture zone.  相似文献   
2.
Hydraulic conductivity (K) for an alluvial system in a riverbank filtration area in Changwon City, South Korea, has been studied using grain-size distribution, pumping and slug tests, and numerical modeling. The alluvial system is composed of layers: upper fine sand, medium sand, lower fine sand, and a highly conductive sand/gravel layer at the base. The geometric mean of K for the sand/gravel layer (9.89?×?10?4 m s?1), as determined by grain-size analyses, was 3.33 times greater than the geometric mean obtained from pumping tests (2.97?×?10?4 m s?1). The geometric mean of K estimates obtained from slug tests (3.08?×?10?6 m s?1) was one to two orders of magnitude lower than that from pumping tests and grain-size analyses. K estimates derived from a numerical model were compared to those derived from the grain-size methods, slug tests and pumping tests in order to determine the degree of deviation from the numerical model. It is considered that the K estimates determined by the slug tests resemble the uppermost part of the alluvial deposit, whereas the K estimates obtained by grain-size analyses and pumping tests are similar to those from the numerical model for the sand/gravel layer of the riverside alluvial system.  相似文献   
3.
In Germany, the gasoline additive methyl tert‐butyl ether (MTBE) is almost constantly detected in measurable concentrations in surface waters and is not significantly removed during riverbank filtration. The removal of MTBE from water has been the focus of many studies that mostly were performed at high concentration levels and centred in understanding the mechanisms of elimination. In order to assess the performance of conventional and advanced water treatment technologies for MTBE removal in the low concentration range further studies were undertaken. Laboratory experiments included aeration, granulated activated carbon (GAC) adsorption, ozonation and advanced oxidation processes (AOP). The results show that the removal of MTBE by conventional technologies is not easily achieved. MTBE is only removed by aeration at high expense. Ozonation at neutral pH values did not prove to be effective in eliminating MTBE at all. The use of ozone/H2O2 (AOP) may lead to a partly elimination of MTBE. However, the ozone/H2O2 concentrations required for a complete removal of MTBE from natural waters is much higher than the ozone levels applied nowadays in waterworks. MTBE is only poorly adsorbed on activated carbon, thus GAC filtration is not efficient in eliminating MTBE. A comparison with real‐life data from German waterworks reveals that if MTBE is detected in the raw water it is most often found in the corresponding drinking water as well due to the poor removal efficiency of conventional treatment steps.  相似文献   
4.
Recent study indicates that the response of rigid passive piles is dominated by elastic pile–soil interaction and may be estimated using theory for lateral piles. The difference lies in that passive piles normally are associated with a large scatter of the ratio of maximum bending moment over maximum shear force and induce a limiting pressure that is ~1/3 that on laterally loaded piles. This disparity prompts this study. This paper proposes pressure‐based pile–soil models and develops their associated solutions to capture response of rigid piles subjected to soil movement. The impact of soil movement was encapsulated into a power‐law distributed loading over a sliding depth, and load transfer model was adopted to mimic the pile–soil interaction. The solutions are presented in explicit expressions and can be readily obtained. They are capable of capturing responses of model piles in a sliding soil owing to the impact of sliding depth and relative strength between sliding and stable layer on limiting force prior to ultimate state. In comparison with available solutions for ultimate state, this study reveals the 1/3 limiting pressure (of the active piles) on passive piles was induced by elastic interaction. The current models employing distributed pressure for moving soil are more pertinent to passive piles (rather than plastic soil flow). An example calculation against instrumented model piles is provided, which demonstrates the accuracy of the current solutions for design slope stabilising piles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
5.
Riverbank erosion, associated sedimentation and land loss hazards are a land management problem of global significance and many attempts to predict the onset of riverbank instability have been made. Recently, Osman and Thorne (1988) have presented a Culmann-type analysis of the stability of steep, cohesive riverbanks; this has the potential to be a considerable improvement over previous bank stability theories, which do not account for bank geometry changes due to toe scour and lateral erosion. However, in this paper it is shown that the existing Osman-Thorne model does not properly incorporate the influence of tension cracking on bank stability since the location of the tension crack on the floodplain is indirectly determined via calculation or arbitrary specification of the tension crack depth. Furthermore, accurate determination of tension crack location is essential to the calculation of the geometry of riverbank failure blocks and hence prediction of land loss and bank sediment yield associated with riverbank instability and channel widening. In this paper, a rational, physically based method to predict the location of tension cracks on the floodplain behind the eroding bank face is presented and tested. A case study is used to illustrate the computational procedure required to apply the model. Improved estimates of failure block geometry using the new method may potentially be applied to improve predictions of bank retreat and floodplain land loss along river channels destabilized as a result of environmental change.  相似文献   
6.
Field surveys indicate lateral variation in peat humification levels (von Post) in dominantly occurring fibric,fibric to hemic,sapric and hemie to sapric peats across a gradient from the margin towards the centre of tropical lowland peat domes.Cement-peat stabilisation can be enhanced by adding mineral soil fillers (silt,clays and fine sands) obtained from Quaternary floodplain deposits and residual soil (weathered schist).The unconfined compressive strength (UCS) of the stabilised cement-mineral soil fifler-peat mix increases with the increased addition of selected mineral soil filler.Lateral variation in the stabilised peat strength (UCS) in the top 0 to 0.5 m layer was found from the margin towards the centre of the tropical lowland peat dome.The variations in the UCS of stabilised tropical lowland peats along a gradient from the periphery towards the centre of the peat dome are most likely caused by a combination of factors due to variations in the mineral soil or ash content of the peat and horizontal zonation or lateral variation in the dominant species of the plant assemblages (due to successive vegetation zonation of the peat swamp forest from the periphery towards the centre of the tropical lowland peat dome).  相似文献   
7.
In this article, the potential of a binder developed by admixing fly ash and ground granulated blast furnace slag (GGBS) to stabilise expansive soils is evaluated. Laboratory tests included determination of free swell index, swell potential and swelling pressure tests of the soil/binder mixtures at different mixing ratio. The test results showed decrease in the swelling behaviour of the soil with increase in binder content. The percent swell–time relationship was observed to fit the hyperbolic curves enabling us to predict the ultimate percent swell from few initial test results. Addition of 1% of lime to the binder showed further improvement in reducing swelling. A good linear relationship is established between percent oedometer swell and modified free swell index (MFSI) for soil/binder mixtures without lime but the same has not been observed in the presence of lime. The compressibility characteristics of the soil/binder mixtures reduced nominally with increase in binder content but in the presence of lime, the compressibility reduced significantly. Binder used in this study has been found to be effective and economic to stabilise expansive soils with lesser amount of chemical additives such as lime.  相似文献   
8.
This paper presents the results of geotechnical and mineralogical investigations on lime-treated soft clay soil from Idku City, Egypt, where high organic matters of about 14% exist. Lime was added in the order of 1%, 3%, 5% and 7% by weight and laboratory experiments after 7, 15, 30 and 60 days were conducted including the mineralogical and microstructural examinations, grain size analysis, plasticity limits, unconfined compressive tests, vane shear tests and oedometer tests. The results indicate that soft clay soil of high organic content of 14% can be stabilized satisfactorily with the addition of 7% lime. The results also demonstrate that the changes in the mineralogical contents and soil fabric of high organic lime-treated soft clay improve soil plasticity, strength and compressibility.  相似文献   
9.
《国际泥沙研究》2016,(4):291-298
As a result of the interaction between hydrodynamics and the effects of gravity, riverbank collapse is a common occurrence in the desert reach of the upper Yellow River (also called as Ningxia-Mongolia Inner reach), of which the riverbank may be divided into three types such as sandy riverbank in the wide-valley desert reach, silt-deposition riverbank on the fluvial plain and silt–sandy riverbank. The char-acteristics of both typical riverbank collapse and the particle size distributions (PSDs) for collapsed riverbanks of sandy, silt-deposition, and silt–sandy types were determined from analysis of data obtained from the field observations. It was found that particles from the silt-deposition riverbank had the smallest median size and those from the sandy riverbank the largest, with those from the silt–sandy riverbank being intermediate in size. The PSDs of the sandy and silt-deposition riverbanks exhibited double-peaked and single-peaked structures, respectively, while those of the silt–sandy riverbank exhibited multiple peaks. Furthermore, the corresponding to three kinds of riverbank collapse mechanisms were revealed. These results are significant with regard both to the understanding of river dynamics and to the planning of river harnessing projects.  相似文献   
10.
The design strength of cement treated soils and its variability are influenced by various contributing factors such as inherent variability of the soft ground as well as variations in the quantities of the additives used for improvement. To consider these variations, geotechnical designs use the factor of safety approach. This paper shows that the reliability-based analysis enables a rational choice of a design strength value for the cement-stabilised soft soil, considering the variations in the influencing input parameters in an appropriate manner. An approach for identifying the important variables governing the strength behaviour of improved soft soils is also illustrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号