首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   546篇
  免费   65篇
  国内免费   101篇
测绘学   2篇
大气科学   1篇
地球物理   139篇
地质学   486篇
海洋学   40篇
天文学   2篇
综合类   26篇
自然地理   16篇
  2024年   1篇
  2023年   6篇
  2022年   29篇
  2021年   8篇
  2020年   11篇
  2019年   16篇
  2018年   15篇
  2017年   32篇
  2016年   31篇
  2015年   45篇
  2014年   42篇
  2013年   48篇
  2012年   16篇
  2011年   27篇
  2010年   30篇
  2009年   30篇
  2008年   24篇
  2007年   43篇
  2006年   38篇
  2005年   20篇
  2004年   20篇
  2003年   15篇
  2002年   24篇
  2001年   12篇
  2000年   15篇
  1999年   14篇
  1998年   9篇
  1997年   10篇
  1996年   9篇
  1995年   13篇
  1994年   8篇
  1993年   10篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1981年   4篇
  1979年   2篇
排序方式: 共有712条查询结果,搜索用时 78 毫秒
1.
沂水崔家峪玻璃用石英砂岩矿床赋存于早寒武世李官组砂岩段中.呈近水平的层状产出。因其岩石坚硬.矿体呈环山的平台状分布。矿体厚度大,矿石品级高,特级品矿石二氧化硅平均含量98.47%,铁杂质平均含量0.043%(选矿后,铁杂质含量可降至0.02%以下),为一优质玻璃硅质原料矿床。矿石为细一中粒石英砂岩,粒度以中粒为主,矿石由碎屑颗粒和胶结物组成,碎屑成分含量为97%~98%.其中绝大部分是石英颗粒.具典型的砂屑结掏。该矿床属滨海陆源沉积矿床。  相似文献   
2.
The auriferous veins at Jinniushan occurs within the Jinniushan faulted zone in the Kunyushan Granite. Optical observation reveals that gold ore body formed during the main stage of hydrothermal activity. Detailed geothermometric studies of fluid inclusions from the veins show that the forming temperature ranges between 130℃ and 370℃ and the salinity is from 4.01 to 15.21 wvt percent NaCl. The ore-forming fluid is featured by low to moderate salinity, and low to moderate temperature. According to investigations of the values of vapor/liquid and temperatures of the ore-forming fluids, we propose that the boiling fluid inclusions exist in the main mineralization stages. Fluid boiling is suggested as a mechanism for the precipitation of gold from the hydrothermal fluid in the Jinniushan gold deposit.  相似文献   
3.
The hydrogeochemistry of methane: Evidence from English groundwaters   总被引:2,自引:0,他引:2  
The presence of methane (CH4) in groundwater is usually only noticed when it rises to high concentrations; to date rather little is known about its production or natural ‘baseline’ conditions. Evidence from a range of non-polluted groundwater environments in England, including water supply aquifers, aquicludes and thermal waters, reveals that CH4 is almost always detectable, even in aerobic conditions. Measurements of potable waters from Cretaceous, Jurassic and Triassic carbonate and sandstone aquifers reveal CH4 concentrations of up to 500 μg/l, but a mean value of < 10 μg/l. However, aquiclude and thermal waters from the Carboniferous and Triassic typically contain in excess of 1500 μg/l. Such high concentrations have so far only been found at redox (Eh) potentials below 0 mV, but in general CH4 concentration and Eh value are poorly correlated. This suggests a lack of thermodynamic equilibrium, which is confirmed by comparing pe values calculated from the redox couple C(4)/C(− 4) with those derived from Eh. Genesis of CH4 appears to occur on two timescales: a rapid if low rate of production from labile carbon in anaerobic microsites in the soil, and a much longer, millennium scale of production from more refractory carbon. Methane is rarely measured in groundwater; there is no single ionic determinand which acts universally as a proxy, but a combination of high HCO3 and low SO4 concentrations, or the reverse, is an indication that high amounts of CH4 may be present.  相似文献   
4.
The behaviour of quartz during metamorphism is studied based on two case studies from the Barrovian terrains of Sulitjelma in arctic Scandinavia and Loch Tay in the Central Highlands Dalradian of Scotland. Both terrains preserve evidence for metamorphism in pelites involving nucleation and growth of garnet at different times in the deformation history. Data are presented on the size, shape and crystallographic orientation of quartz preserved as inclusions in garnet and as grains in the surrounding matrix. While quartz-grains remain small and dispersed between mica grains, deformation appears to be dominated by grain-boundary sliding accommodated by dissolution–precipitation. At amphibolite facies, textural coarsening occurs by dissolution of small quartz grains and growth of larger quartz grains, coupled with segregation of quartz from mica. As a result, quartz deforms by dislocation creep, developing crystallographic preferred orientations (CPO) consistent with both coaxial and non-coaxial strain. Quartz CPOs with <0001> axes lying parallel to foliation and stretching direction are commonly developed, and best explained by mechanical rotation of inequant (detrital?) quartz grains. There is no evidence for selective entrapment of quartz inclusions in garnet on the basis of quartz crystallographic orientation.  相似文献   
5.
The Pedra Furada is a 12 m wide, 18 m high outcrop feature showing hundreds of ferruginised sandy tubes and looking in part like a giant organ. In this paper the origin of the tubes is explained on the basis of geochemical, petrographic and microscopic (optical and electronic) analytical data. The tubes are considered to represent vertical escape channels for overpressured water, exhibiting inward decreasing grain size due to water velocity gradients inside the escape channels. The ferruginisation is due to iron oxides associated with colloidal/clayey fine sediments and to goethite formed from solution. The overpressure of water may be due to seismically fluidised beds below the Pedra Furada outcrop or to artesian water ascent. In both cases, fault rupturing may have played a major role in the focussing of the ascending flow.  相似文献   
6.
Large pyroclastic rhyolites are snapshots of evolving magma bodies, and preserved in their eruptive pyroclasts is a record of evolution up to the time of eruption. Here we focus on the conditions and processes in the Oruanui magma that erupted at 26.5 ka from Taupo Volcano, New Zealand. The 530 km3 (void-free) of material erupted in the Oruanui event is comparable in size to the Bishop Tuff in California, but differs in that rhyolitic pumice and glass compositions, although variable, did not change systematically with eruption order. We measured the concentrations of H2O, CO2 and major and trace elements in zoned phenocrysts and melt inclusions from individual pumice clasts covering the range from early to late erupted units. We also used cathodoluminescence imaging to infer growth histories of quartz phenocrysts. For quartz-hosted inclusions, we studied both fully enclosed melt inclusions and reentrants (connecting to host melt through a small opening). The textures and compositions of inclusions and phenocrysts reflect complex pre-eruptive processes of incomplete assimilation/partial melting, crystallization differentiation, magma mixing and gas saturation. ‘Restitic’ quartz occurs in seven of eight pumice clasts studied. Variations in dissolved H2O and CO2 in quartz-hosted melt inclusions reflect gas saturation in the Oruanui magma and crystallization depths of ∼3.5–7 km. Based on variations of dissolved H2O and CO2 in reentrants, the amount of exsolved gas at the beginning of eruption increased with depth, corresponding to decreasing density with depth. Pre-eruptive mixing of magma with varying gas content implies variations in magma bulk density that would have driven convective mixing. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
7.
Near the eastern end of the Tonale fault zone, a segment of the Periadriatic fault system in the Italian Alps, the Adamello intrusion produced a syn-kinematic contact aureole. A temperature gradient from 250 to 700 °C was determined across the Tonale fault zone using critical syn-kinematic mineral assemblages from the metasedimentary host rocks surrounding deformed quartz veins. Deformed quartz veins sampled along this temperature gradient display a transition from cataclasites to mylonites (frictional–viscous transition) at 280±30 °C. Within the mylonites, zones characterized by different dynamic recrystallization mechanisms were defined: Bulging recrystallization (BLG) was dominant between 280 and 400 °C, subgrain rotation recrystallization (SGR) in the 400–500 °C interval, and the transition to dominant grain boundary migration recrystallization (GBM) occurred at 500 °C. The microstructures associated with the three recrystallization mechanisms and the transitions between them can be correlated with experimentally derived dislocation creep regimes. Bulk texture X-ray goniometry and computer-automated analysis of preferred [c]-axis orientations of porphyroclasts and recrystallized grains are used to quantify textural differences that correspond to the observed microstructural changes. Within the BLG- and SGR zones, porphyroclasts show predominantly single [c]-axis maxima. At the transition from the SGR- to the GBM zone, the texture of recrystallized grains indicates a change from [c]-axis girdles, diagnostic of multiple slip systems, to a single maximum in Y. Within the GBM zone, above 630±30 °C, the textures also include submaxima, which are indicative of combined basal a- and prism [c] slip.  相似文献   
8.
9.
Fracturing and frictional sliding of quartz and granite under dry condition generates fractoluminescence, charged particle emission and electromagnetic radiation. Various kinds of experiments indicate that surface charge density on fracture or frictional slip surface of quartz and granite is 10−4 to 10−2 C/m2 which is larger than bound charges induced by the disappearance of piezoelectricity due to the release of stress. Hole and electron trapping centers, which is found in semiconductor devices with the Si–SiO2 system, are causes of surface charging on fracture or frictional slip surface of quartz crystal. The quantity of the surface charge is enough to cause corona discharge that can generate earthquake lights. The mechanism considering the hole and electron trapping centers has a probability to explain why non-piezoelectric minerals or rocks generate electromagnetic phenomena. It can be one of origins of seismo-electromagnetic phenomena (SEP).  相似文献   
10.
The microstructure of a quartzite experimentally deformed and partially recrystallised at 900 °C, 1.2 GPa confining pressure and strain rate 10−6/s was investigated using orientation contrast and electron backscatter diffraction (EBSD). Boundaries between misoriented domains (grains or subgrains) were determined by image analysis of orientation contrast images. In each domain, EBSD measurements gave the complete quartz lattice orientation and enabled calculation of misorientation angles across every domain boundary. Results are analysed in terms of the boundary density, which for any range of misorientations is the boundary length for that range divided by image area. This allows a more direct comparison of misorientation statistics between different parts of a sample than does a treatment in terms of boundary number.The strain in the quartzite sample is heterogeneous. A 100×150 μm low-strain partially recrystallised subarea C was compared with a high-strain completely recrystallised subarea E. The density of high-angle (>10°) boundaries in E is roughly double that in C, reflecting the greater degree of recrystallisation. Low-angle boundaries in C and E are produced by subgrain rotation. In the low-angle range 0–10° boundary densities in both C and E show an exponential decrease with increasing misorientation. The densities scale with exp(−θ/λ) where λ is approximately 2° in C and 1° in E; in other words, E has a comparative dearth of boundaries in the 8–10° range. We explain this dearth in terms of mobile high-angle boundaries sweeping through and consuming low-angle boundaries as the latter increase misorientation through time. In E, the density of high-angle boundaries is larger than in C, so this sweeping would have been more efficient and could explain the relative paucity of 8–10° boundaries.The boundary density can be generalised to a directional property that gives the degree of anisotropy of the boundary network and its preferred orientation. Despite the imposed strain, the analysed samples show that boundaries are not, on average, strongly aligned. This is a function of the strong sinuosity of high-angle boundaries, caused by grain boundary migration. Low-angle boundaries might be expected, on average, to be aligned in relation to imposed strain but this is not found.Boundary densities and their generalisation in terms of directional properties provide objective measures of microstructure. In this study the patterns they show are interpreted in terms of combined subgrain rotation and migration recrystallisation, but it may be that other microstructural processes give distinctive patterns when analysed in this fashion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号