首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
  国内免费   3篇
大气科学   8篇
地球物理   15篇
地质学   11篇
海洋学   3篇
自然地理   9篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2014年   2篇
  2012年   1篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
Along a 28 km reach of the Klip River, eastern Free State, South Africa, mud- and sand-dominated meanders have developed in close proximity within a floodplain wetland up to 1.5 km wide, providing an unusual opportunity to compare their characteristics under similar hydrological conditions. Throughout the reach, the channel bed is grounded on sandstone/shale bedrock although the banks are alluvial, and most river activity occurs during summer high flows. The reach can be divided into three geomorphological zones: Zone 1 (0–11 km), a muddy proximal part with a single meandering channel (w/d < 10) and near-permanent standing water in oxbows and backswamps; Zone 2 (11–17.5 km), a transitional mud-to-sand part with one main channel (w/d  20–30), a number of sinuous palaeochannels and oxbows, and only limited standing water; and Zone 3 (17.5–28 km), a sandy distal part with a single meandering channel (w/d  15–30), scroll bars and oxbows, and little standing water. Each zone also has a distinctive sedimentology: Zone 1 is characterised by an  3–4 m thick succession of basal sand and minor granules overlain by dominantly muddy sediment deposited primarily by oblique accretion in meander bends; Zone 2 is characterised by < 4 m of interbedded sand and mud deposited primarily by lateral point-bar accretion, although a history of avulsions also attests to the importance of abandoned-channel accretion; and Zone 3 is characterised by < 3 m of dominantly sand deposited primarily by lateral point-bar accretion. This unusual downstream sediment coarsening trend, and the associated changes in channel and floodplain character, are independent of sediment inputs from tributaries, and result from a downstream increase in bankfull unit stream power from < 3.5 W m− 2 (Zone 1) to  4–10 W m− 2 (Zone 3). Mud is deposited primarily in low-energy Zone 1 but is conveyed in suspension more effectively through higher energy Zones 2 and 3, only forming drapes over sandy lateral accretion deposits during waning flood stages. The downstream increase in unit stream power is controlled in part by a slight downstream increase in floodplain gradient that may be related to a subtle variation in the erosional resistance of the bedrock underlying the channel bed. These findings add to previous work on meandering rivers by demonstrating that mud-dominated meanders can occur in long-term erosional settings where the channel bed is grounded on bedrock, and that downstream fining trends may be reversed locally.  相似文献   
2.
A method of visualizing structures in closed chaotic flows out of homogenous particle distributions is presented in the example of models of a meandering jet. To this end, the system will be leaked or opened up by defining a region of the flow, so that a particle is considered to be escaped if it leaves this region. By applying this method to an ensemble of nonescaped tracers, we are able to characterize mixing processes by visualizing the converging and stretching filamentations (stable and unstable manifolds) in the flow without using additional mathematical tools. The possibility of applying the algorithm to analyze buoy data, and a comparison with the finite time manifolds are discussed.  相似文献   
3.
This study investigates the fluvial dynamics of straight natural stream channels. In particular, this experimental field study quantitatively assesses a physically based non-linear mathematical theory of alternate bar formation under unsteady natural flow conditions within a straight alluvial stream. The study site is an artificially straightened section of the Embarras River located approximately 16 km south of Champaign, Illinois. Data were collected on channel form, gradient, alternate bar dimensions, bed sediment size and flow stage over a 2 year study period. Both linear and non-linear steady flow hydrodynamic theories suggest that alternate bars are critical to the process of meander development. But these theories do not predict bar development for unsteady flow conditions, which typically occur in natural alluvial channels. Tubino (1991) suggests that bar evolution for a flood hydrograph can be divided into three parts: (1) a period of limited bar growth during the rising stage of the flood; (2) a stage of modest bar decay near the peak of the flood; and (3) a stage of non-linear bar growth during the prolonged falling stage of the flood. Bars developed during the falling limb of a hydrograph, and exhibited sequential development rather than the uniform growth along the reach predicted by Tubino's model. As flow stage decreased, short, low, fine-grained bars were superimposed on long, high and coarser-grained bars that developed under preceding high flow stages. These results suggest that the process of bar formation in artificially straightened natural streams with heterogeneous bed material may occur under different flow conditions and in a different manner than predicted by theoretical models. Further work should focus on attempting to isolate the physical mechanisms responsible for alternate bar formation in straight natural streams with heterogeneous bed material and flashy hydrologic flow regimes.  相似文献   
4.
The manner in which small channels are generated, from plane beds beneath sheet flows, has been experimentally elucidated. On plane, erodible, sand beds, the transition from thin, supercritical sheet flows to the channelled condition was studied over ranges of discharge, slope, and temperature. Secondary flow of the second kind, its action facilitated by steep vertical velocity gradients in the primary flows, caused sheet-flow instability. Along junctions between neighbouring secondary cells, both either raised or lowered elements of the primary flow. In the latter case, fast surface water was lowered to the bed, causing relatively intense, local, longitudinal scour. Dislodged grains were moved divergently to either side, leaving straight, central trenches. Development of positive feedback between cells and trenches led to rapid enlargement of the latter and concomitant growth of paired levees. The resulting structures, ‘protochannels’, were themselves ephemeral, developing two types of instability associated with secondary flow of the first kind. Firstly, small deviations from bilateral symmetry were enhanced, causing evolution into meandering channels. Secondly, headcutting led to multiple tributary development and, at resulting confluences, the action of strong pairs of secondary cells led to the development of braiding channels. Because they are shortlived, protochannels are but rarely seen in nature. Their seeding is markedly temperature-sensitive, reflecting their frictional origin. The erosive power of shallow overland flow largely depends on flow-energy concentration by secondary flow, firstly into channels, then within the channels themselves. Suppression of secondary flow, as by intense raindrop bombardment, can stabilize sheet flows. In deeper water, the effects of secondary flow appear relatively less dramatic. However, even if such motion is weak, bedload divergence from attachment lines can favour entrainment locally and thus affect bed geometry. Analogy between our results and river behaviour appears close and. on continental shelves where water must often flow as sheets, structures resembling giant protochannels evidently persist.  相似文献   
5.
Predicting channel patterns   总被引:1,自引:0,他引:1  
The proposed distinction between meandering and braided river channel patterns, on the basis of bankfull specific stream power and bed material size, is analysed and rejected. Only by using regime-based estimates of channel widths (rather than actual widths) has discrimination been achieved, and it is argued that this procedure is unacceptable.An alternative is to explore the patterning processes underlying the marked pattern scatter on bankfull stream power/bed material size plots. Of the five sets of patterning processes, large-scale bedform development and stability is seen as especially important for meandering and braiding. For gravel-bed rivers, bedforms developed at around or above bankfull stage appear important for pattern generation, with braiding relating to higher excess shear stress and Froude number. There seems to be an upper threshold to both meandering and braiding which is achieved at extreme discharges and steep gradients, as on steep alluvial fans, rather than for the rivers with available flow data here considered. For sand-bed rivers with greater excess shear stress, the equivalent upper plane bed threshold may occur below bankfull, with bed material mobility and bedform modification occurring over a wider range of sub-bankfull discharges. Sand-bed channel margin outlines appear to be less perturbed by bedform effects than gravel bed planforms, and they may have naturally straight or sinuous planforms. Bedform relief may nevertheless lead to some being designated as braided when viewed at low flows.It is concluded that the use of a single-stage stream power measure and bed material size alone is unlikely to achieve meandering/braiding discrimination.  相似文献   
6.
An analysis of the planform changes of the Colombian reach of the Amazon River was carried out over a period of 19.9 years. Remote sensing image processing techniques were applied to Landsat images acquired in 1986, 1994, 2001 and, 2006. These images were selected based on minimal daily water level variations, while providing the widest temporal span. Plan view river changes and geomorphologic characteristics were examined to identify which channel pattern classification best represents this large tropical river system. Discharge was also analyzed to determine whether changes in the river's plan view are a direct response to variations in discharge. The system had a depositional tendency between 1986 and 2006, with a period where erosion was more intense than deposition between 1994 and 2001. Percent change in the plan view area of the system (1.4% yr−1) and the maximum migration rates (125 m yr−1) suggest that this reach of the Amazon is less active than reaches upstream and the downstream reach between the confluences of the Jutaí and Japurá Rivers. Variations in discharge appear to be responsible for deposition and erosion dynamics observed after this remote sensing analysis in the Colombian reach of the Amazon River. Characteristics including multiple channels with vegetated islands developed from within-channel deposition, meandering planform, lateral activity of channel margins, and the absence of islands with saucer-like morphology suggest a multichannel, meandering pattern for this reach of the Amazon, that corresponds to a laterally active anabranching river.  相似文献   
7.
张金亮 《地质论评》2022,68(1):2022010017-2022010017
分支河流体系的讨论有助于促进各类冲积体系的分类学研究,并可促进源—汇体系分析的定量化。博茨瓦纳的奥卡万戈(Okavango)曲流河扇是分支河流体系的典型代表,具有独特的沉积学、水文学和地貌学特征,主要特点如下:①河道形态属于单线曲流河道向下游分叉型,顺流方向产生弯度不一的分支河道网络,从顶点向下游方向,河道呈放射状,由河谷内的限制性河道变为盆地内的非限制性河道;②顺斜坡向下,河道分叉作用增强,河道的尺度和规模减小,受物源控制,无论是曲流河道还是低弯度河道,皆为砂质载荷,河道宽度、水体深度和沉积物粒度虽有系统变化但不显著,且在极低的坡度控制下,随着流量的减少,河道由曲流河逐渐变为低弯度河,河道形态转化的主要影响因素是坡度、流量、沉积物粒级和河岸强度;③根据湿地和河道分布特征,可将扇体划分为补给河谷、近源扇、中部扇和远端扇4个亚环境:补给河谷以单线曲流带和不同规模的迂回坝发育为特征,近源扇主要为泥炭限制的分支河道和河间沼泽沉积,中部扇主要为曲流河和低弯度河沉积,沼泽减少,漫滩增加,远端扇为宽浅型的非限定性河道,以沙岛林地之间的漫滩沉积为主;④沉积物主要为未固结的石英砂,主要来源于卡拉哈里盆地近代风成沉积,砂质纯净,分选和磨圆俱佳,缺乏细粒杂基,粒间细粒组分主要为生物成因的硅藻、植硅石和有机物质,亦见有方解石和二氧化硅胶结物。  对现代曲流河扇体系进行调查的重要目的就是研究地下类似沉积体系的分布。通过对我国大型含油气盆地相关“内陆三角洲”沉积特征和沉积规律的重新认识,可为油气资源的勘探开发提供预测模式。鄂尔多斯盆地山西组沉积时期,沉积作用受盆地北缘物源控制,来自北部物源的碎屑物质在宽阔的湿地平原上发育了多套分支河流沉积体系,主要为曲流河扇沉积体系。顺着沉积斜坡向下,河道的尺度和规模减小,沉积物粒度变细,煤层和暗色泥岩厚度变小,缺乏明显的三角洲前缘沉积环境及稳定的前三角洲深水相。沉积组合主要表现为分支河道砂岩、漫岸细粒沉积与湿地泥岩及薄煤层的互层,为大气田的形成奠定了沉积基础。  相似文献   
8.
The 30 to 155 m thick Early Permian (Artinskian) Warchha Sandstone of the Salt Range, Pakistan is a conglomerate, sandstone and claystone succession within which seven lithofacies types (Gt, St, Sp, Sr, Sh, Fl and Fm) occur in a predictable order as repeated fining-upward cycles. Common sedimentary structures in the conglomerates and sandstones include planar and trough cross-bedding, planar lamination, soft sediment-deformed bedding, compound cosets of strata with low-angle inclined bounding surfaces and lags of imbricated pebbles. Structures in the finer-grained facies include desiccation cracks, raindrop imprints, caliche nodules and bioturbation. Groups of associated facies are arranged into nine distinct architectural elements (channels, gravel bars, sandy bedforms, downstream and laterally accreting barforms, sand sheets, crevasse splays, levees, floodplain units and shallow lakes), which is consistent with a fluvial origin for the succession. The types of architectural elements present and their relationship to each other demonstrate that the Warchha Sandstone preserves a record of a meandering river system that drained the northern margin of Gondwanaland. The dominance of fine-grained (floodplain) facies over gravel-grade (channel-base) facies and the widespread occurrence of large-scale lateral accretion elements supports the interpretation of a high-sinuosity, meandering fluvial system in which channel bodies accumulated via the lateral accretion of point bars but in which the active channels covered only a small part of a broad floodplain at any time instant. Although the regional and temporal distribution of these deposits is complex, in broad terms the lower part is dominated by stacked, multistorey channel bodies, whereas single-storey channel elements isolated in abundant fine-grained floodplain deposits dominate the middle and upper parts of the formation.  相似文献   
9.
1 INTRODUCTION Amongthediversityofexistingriverchannelprocesses,meanderingisthemostcommonandfrequentone.Itistypicallythecommon?..  相似文献   
10.
渤海湾盆地A油田新近系明下段Ⅱ—Ⅴ油组是其主力含油层位。通过观察分析岩心资料的沉积构造特征、岩矿特征和粒度特征、测井形态、地球物理属性等特征,综合判定其主要发育曲流河和浅水三角洲两种沉积相类型,油田范围内曲流河主要发育河道、决口扇、天然堤和泛滥平原4种沉积微相,浅水三角洲主要发育水下分支河道、水下天然堤、河口坝和分流间湾4种沉积微相。通过分析沉积相特征,结合高分辨率层序地层学观点,对A油田明下Ⅱ—Ⅴ油组的垂向演化特征进行了探讨,结果表明:处于长周期上升半旋回的Ⅴ油组曲流河呈条带状分布;处于长周期下降半旋回初期的Ⅳ油组浅水三角洲平面呈坨状,内部砂体连通性差;处于长周期下降半旋回中期的Ⅲ油组浅水三角洲平面呈朵叶状,砂体以侧向叠置为主;处于长周期下降半旋回晚期的Ⅱ油组浅水三角洲平面呈鸟足状,砂体以垂向叠置为主。最终提出该油田沉积演化模式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号