首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  国内免费   1篇
大气科学   2篇
地球物理   1篇
海洋学   1篇
自然地理   1篇
  2022年   1篇
  2016年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
采用1900-2014年115 a的观测和再分析资料,使用滤波、线性相关等方法,研究太平洋年代际振荡(Interdecadal Pacific Oscillation,IPO)调节大西洋纬向模(Atlantic Zonal Mode,AZM)对澳大利亚秋季降水年际变动的调节作用及机制.结果 表明,当IPO位于正位相时,...  相似文献   
2.
A number of previous studies have identified changes in the climate occurring on decadal to multi‐decadal time‐scales. Recent studies also have revealed multi‐decadal variability in the modulation of the magnitude of El Niño–Southern Oscillation (ENSO) impacts on rainfall and stream flow in Australia and other areas. This study investigates multi‐decadal variability of drought risk by analysing the performance of a water storage reservoir in New South Wales, Australia, during different climate epochs defined using the Inter‐decadal Pacific Oscillation (IPO) index. The performance of the reservoir is also analysed under three adaptive management techniques and these are compared with the reservoir performance using the current ‘reactive’ management practices. The results indicate that IPO modulation of both the magnitude and frequency of ENSO events has the effect of reducing and elevating drought risk on multi‐decadal time‐scales. The results also confirm that adaptive reservoir management techniques, based on ENSO forecasts, can improve drought security and become significantly more important during dry climate epochs. These results have marked implications for improving drought security for water storage reservoirs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
3.
张雅乐  俞永强 《大气科学》2016,40(1):176-190
本文选用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)发展的全球海洋—大气—陆面气候系统模式(FGOALS)的4个版本g2.0、s2.0、g1.1和g1,利用模式的长时间积分结果,结合观测、再分析资料比较、评估模式对太平洋年代际变率的模拟能力,并通过对海气相互作用及其海洋动力过程分析,探讨了模式中太平洋年代际振荡形成机制.研究发现,FGOALS 模式g2.0和s2.0版本对太平洋年代际振荡(PDO/IPO)的模拟能力优于 g1.1和g1.模式中太平洋年代际变率的正反馈过程与Bjerknes(1969)提出的海气相互作用正反馈机制有关,其负反馈则主要与海洋内部动力过程有关.太平洋异常经向热量输送将热带与中纬度海洋联系在一起,可以抑制正反馈作用,但无法使得年代际振荡变化位相发生反转;FGOALS模式中,热带海表温度(SST)暖距平信号通过大气桥影响热带外大气环流,在海气作用下,热带与热带外海洋次表层分别以Kelvin 波和Rossby 波的形式传播,使得冷暖位相反转,4个版本均能再现这种负反馈机制.但不同版本Rossby波所处的纬度不同,太平洋SST异常年代际变化信号最明显的范围越宽,则由此激发的Rossby 波便更为偏北,纬度越高Rossby 波西传的时间也越长,PDO/IPO的周期与其SST异常的经向尺度密切相关.  相似文献   
4.
The Pacific Decadal Oscillation   总被引:60,自引:1,他引:60  
The Pacific Decadal Oscillation (PDO) has been described by some as a long-lived El Niño-like pattern of Pacific climate variability, and by others as a blend of two sometimes independent modes having distinct spatial and temporal characteristics of North Pacific sea surface temperature (SST) variability. A growing body of evidence highlights a strong tendency for PDO impacts in the Southern Hemisphere, with important surface climate anomalies over the mid-latitude South Pacific Ocean, Australia and South America. Several independent studies find evidence for just two full PDO cycles in the past century: “cool” PDO regimes prevailed from 1890–1924 and again from 1947–1976, while “warm” PDO regimes dominated from 1925–1946 and from 1977 through (at least) the mid-1990's. Interdecadal changes in Pacific climate have widespread impacts on natural systems, including water resources in the Americas and many marine fisheries in the North Pacific. Tree-ring and Pacific coral based climate reconstructions suggest that PDO variations—at a range of varying time scales—can be traced back to at least 1600, although there are important differences between different proxy reconstructions. While 20th Century PDO fluctuations were most energetic in two general periodicities—one from 15-to-25 years, and the other from 50-to-70 years—the mechanisms causing PDO variability remain unclear. To date, there is little in the way of observational evidence to support a mid-latitude coupled air-sea interaction for PDO, though there are several well-understood mechanisms that promote multi-year persistence in North Pacific upper ocean temperature anomalies.  相似文献   
5.
ABSTRACT. Norway and New Zealand both experienced recent glacial advances, commencing in the early 1980s and ceasing around 2000, which were more extensive than any other since the end of the Little Ice Age. Common to both countries, the positive glacier balances are associated with an increase in the strength of westerly atmospheric circulation which brought increased precipitation. In Norway, the changes are also associated with lower ablation season temperatures. In New Zealand, where the positive balances were distributed uniformly throughout the Southern Alps, the period of increased mass balance was coincident with a change in the Interdecadal Pacific Oscillation and an associated increase in El Niño/Southern Oscillation events. In Norway, the positive balances occurred across a strong west-east gradient with no balance increases to the continental glaciers of Scandinavia. The Norwegian advances are linked to strongly positive North Atlantic Oscillation events which caused an overall increase of precipitation in the winter accumulation season and a general shift of maximum precipitation from autumn towards winter. These cases both show the influence of atmospheric circulation on maritime glaciers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号