首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   14篇
  国内免费   20篇
测绘学   3篇
大气科学   11篇
地球物理   29篇
地质学   71篇
海洋学   38篇
天文学   3篇
综合类   8篇
自然地理   42篇
  2023年   3篇
  2022年   7篇
  2021年   3篇
  2020年   5篇
  2019年   9篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   8篇
  2014年   8篇
  2013年   12篇
  2012年   7篇
  2011年   12篇
  2010年   5篇
  2009年   11篇
  2008年   18篇
  2007年   9篇
  2006年   11篇
  2005年   6篇
  2004年   6篇
  2003年   8篇
  2002年   8篇
  2001年   6篇
  2000年   6篇
  1999年   9篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有205条查询结果,搜索用时 31 毫秒
1.
Samples of lower Palaeozoic bedrock from the Grand Banks of Newfoundland were examined using reflected light microscopy and Rock-Eval pyrolysis. These samples contained organic material which included bitumen (structureless organic material), acritarchs, chitinozoa, scolecodonts and graptolites. The reflectance of the organic material increased from acritarchs towards graptolites with bitumen showing a wide range of reflectance. Multiple phases of oil migration through one sample were inferred by examination of the bitumens: the lowest reflecting being more recent than the highest reflecting bitumen. Combined reflectance and Rock-Eval analysis indicate that these samples are mature to overmature. The two oldest samples (Arenig-Llanvirn, Ordovician) are assessed as mature and as having potential for generation of liquid hydrocarbons, but must be considered as mainly gas prone.  相似文献   
2.
SeaMARC II sidescan (imagery and bathymetry) and seismic data reveal the morphology, sedimentary processes, and structural controls on submarine canyon development in the central Izu-Bonin forearc, south of Japan. Canyons extend up to 150 km across the forearc from the trench-slope break to the active volcanic arc. The canyons are most deeply incised (1200–1700 m) into the gentle gradients (1–2°) upslope on the outer arc high (OAH) and lose bathymetric expression on the steep (6–18°) inner trench-slope. The drainage patterns indicate that canyons are formed by both headward erosion and downcutting. Headward erosion proceeds on two scales. Initially, pervasive small-scale mass wasting creates curvilinear channels and pinnate drainage patterns. Large-scale slumping, evidenced by abundant crescent-shaped scarps along the walls and tributaries of Aoga Shima Canyon, occurs only after a channel is present, and provides a mechanism for canyon branching. The largest slump has removed >16 km3 of sediment from an 85 km2 area of seafloor bounded by scarps more than 200 m high and may be in the initial stages of forming a new canyon branch. The northern branch of Aoga Shima Canyon has eroded upslope to the flanks of the arc volcanoes allowing direct tapping of this volcaniclastic sediment source. Headward erosion of the southern branch is not as advanced but the canyon may capture sediments supplied by unconfined (non-channelized) mass flows.Oligocene forearc sedimentary processes were dominated by unconfined mass flows that created sub-parallel and continuous sedimentary sequences. Pervasive channel cut-and-fill is limited to the Neogene forearc sedimentary sequences which are characterized by migrating and unconformable seismic sequences. Extensive canyon formation permitting sediment bypassing of the forearc by canyon-confined mass flows began in the early Miocene after the basin was filled to the spill points of the OAH. Structural lows in the OAH determined the initial locus of canyon formation, and outcropping basement rocks have prevented canyon incision on the lower slope. A major jog in the canyon axis, linear tributaries, and a prominent sidescan lineament all trend NW-NNW, reflecting OAH basement influence on canyon morphology. This erosional fabric may reflect joint/fracture patterns in the sedimentary strata that follow the basement trends. Once the canyons have eroded down to more erosion-resistant levels, channel downcutting slows relative to lateral erosion of the canyon walls. This accounts for the change from a narrow canyon axis in the thickly sedimented forearc basin to a wider, more rugged canyon morphology near the OAH. About 9500 km3 of sediment has been eroded from the central, 200 km long, segment of the Izu-Bonin forearc by the formation of Aoga Shima, Myojin Sho and Sumisu Jima canyons. The volume of sediment presently residing in the adjacent trench, accretionary wedge, and lower slope terrace basin accounts for <25% of that eroded from the canyons alone. This implies that a large volume (>3500 km3 per 100 km of trench, ignoring sediments input via forearc bypassing) has been subducted beneath the toe of the trench slope and the small accretionary prism. Unless this sediment has been underplated beneath the forearc, it has recycled arc material into the mantle, possibly influencing the composition of arc volcanism.  相似文献   
3.
Since the beginning of formation of Proto-Taiwan, the subducting Philippine (PH) Sea plate has moved continuously through time in the N307° direction with respect to Eurasia (EU), tearing the EU plate. The subducting EU plate includes a continental part in the north and an oceanic part in the south. The boundary B between these two domains corresponds to the eastern prolongation of the northeastern South China Sea ocean-continent transition zone. In the Huatung Basin (east of Taiwan), the Taitung Canyon is N065° oriented and is close and parallel to B. Seismic profiles show that the southern flank of the canyon corresponds to a fault with a normal component of a few tens of meters in the sediments and possible dextral shearing. Several crustal earthquakes of magnitude >%6 are located beneath the trend of the Taitung Canyon and focal mechanisms suggest that the motion is right-lateral. Thus, faulting within the sedimentary sequence beneath the Taitung Canyon is a consequence of underlying dextral strike-slip crustal motions. As the continental part of the EU slab located north of B has been recently detached, some subsequent dextral strike-slip motion might be expected within the EU slab, along the ocean-continent transition zone, which is a potential zone of weakness. We suggest that the dextral strike-slip motion along the ocean-continent boundary of the EU slab might trigger the observed dextral strike-slip motion within the overlying PH Sea crust and the associated faulting within the sediments of the Huatung Basin, beneath the Taitung Canyon. An erratum to this article is available at .  相似文献   
4.
The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 109 m3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 105 m3 s−1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 104 m3 s−1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 104 m3 s−1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>105 m3 s−1) known worldwide and in the top ten largest floods in North America.  相似文献   
5.
6.
One of the most intriguing episodes in the Quaternary evolution of the Grand Canyon of the Colorado River, Arizona, was the development of vast lakes that are thought to have backed up behind lava erupted into the gorge. Stratigraphic evidence for these deep lava-dammed lakes is expectedly sparse. Possible lacustrine deposits at six areas in the eastern canyon yielded no compelling evidence for sediment deposited in a deep lake. At two of the sites the sediment was associated with late Quaternary spring-fed pools and marshes. Water-lain silt and sand at lower Havasu Creek was deposited 3000 cal yr ago. The deposit contains an ostracode assemblage similar to that living in the modern travertine-dammed pools adjacent to the outcrop. The second deposit, at Lees Ferry, formed in a spring-fed marsh 43,000 cal yr ago, as determined by 14C and amino acid geochronology. It contains abundant ostracode and mollusk fossils, the richest assemblages reported from the Grand Canyon to date. Our interpretation of these sediments as spring-fed deposits, and their relative youth, provides an alternative to the conventional view that deposits like these were formed in deep lava-dammed lakes that filled the Grand Canyon.  相似文献   
7.
We present new 40Ar/39Ar data for sanidine and biotite derived from volcanic ash layers that are intercalated in Pliocene and late Miocene astronomically dated sequences in the Mediterranean with the aim to solve existing inconsistencies in the intercalibration between the two independent absolute dating methods. 40Ar/39Ar sanidine ages are systematically younger by 0.7-2.3% than the astronomical ages for the same ash layers. The significance of the discrepancy disappears except for the upper Ptolemais ashes, which reveal the largest difference, if an improved full error propagation method is applied to calculate the absolute error in the 40Ar/39Ar ages. The total variance is dominated by that of the activity of the decay of 40K to 40Ar (∼70%) and that the amount of radiogenic 40Arp in the primary standard GA1550 biotite (∼15%). If the 40Ar/39Ar ages are calculated relative to an astronomically dated standard, the influence of these parameters is greatly reduced, resulting in a more reliable age and in a significant reduction of the error in 40Ar/39Ar dating.Astronomically calibrated ages for Taylor Creek Rhyolite (TCR) and Fish Canyon Tuff (FCT) sanidine are 28.53±0.02 and 28.21±0.04 Ma (±1 S.E.), respectively, if we start from the more reliable results of the Cretan A1 ash layer. The most likely explanation for the large discrepancy found for the younger Ptolemais ash layers (equivalent to FCT of 28.61 Ma) is an error in the tuning of this part of the sequence.  相似文献   
8.
Zircon (U‐Th‐Sm)/He (ZHe) thermochronometry is a powerful tool that has been widely used in geology to constrain the exhumation histories of orogens. In this study, we present an alternative protocol for dissolving zircon grains for determination of parent nuclides. This new alkali fusion procedure developed at the SARM (Service d'Analyse des Roches et des Minéraux) in Nancy, France, is fast (requiring only 2 d, including cleaning steps) and offers several advantages over conventional methods by avoiding: (i) use of HF pressure dissolution and (ii) complete removing of grains from the metal microvials. After dissolution, U, Th and Sm were measured using an ICP‐MS. We tested the new procedure on two different ZHe reference materials, the Fish Canyon Tuff and Buluk Tuff; these provided precision values for ZHe‐age estimations of 9 and 6% (1s), respectively. In addition, using this method, zircons from the Buluk Tuff are shown to be chemically more homogenous and more suitable for assessing the uncertainty of the entire integrated procedure.  相似文献   
9.
京杭大运河是独特的超大型文化遗产,其保护工作面临着复杂的形势和问题,需要新的理论方法和技术手段支持。以地理信息系统(GIS),遥感(RS),全球定位系统(GPS)为核心的空间信息技术在空间信息获取、处理、管理和分析上有着强大的优势。本文根据空间信息科学和文化遗产保护理论,结合京杭大运河保护实际业务需求,探讨了基于空间信息技术的京杭大运河保护地理信息系统的建设思路和建设方法,设计和开发了京杭大运河保护地理信息系统并实际应用于京杭大运河历史文化环境保护工作中,产生了一系列专题研究成果。结果表明:空间信息技术可以为大运河保护提供强有力的技术支持和可靠保障。  相似文献   
10.
A new method is proposed for solving a differential equation arising from weathering-limited development of a valley. Allowance is made for horizontal stratification and overhang can be allowed to develop. The model is applied to the Grand Canyon and comments are included on its relevance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号