首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
地球物理   25篇
地质学   101篇
海洋学   1篇
天文学   1篇
综合类   1篇
自然地理   16篇
  2020年   3篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   16篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   8篇
  2008年   12篇
  2007年   6篇
  2006年   11篇
  2005年   13篇
  2004年   13篇
  2003年   7篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
  1983年   1篇
  1977年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
1.
Backstripping analysis and forward modeling of 162 stratigraphic columns and wells of the Eastern Cordillera (EC), Llanos, and Magdalena Valley shows the Mesozoic Colombian Basin is marked by five lithosphere stretching pulses. Three stretching events are suggested during the Triassic–Jurassic, but additional biostratigraphical data are needed to identify them precisely. The spatial distribution of lithosphere stretching values suggests that small, narrow (<150 km), asymmetric graben basins were located on opposite sides of the paleo-Magdalena–La Salina fault system, which probably was active as a master transtensional or strike-slip fault system. Paleomagnetic data suggesting a significant (at least 10°) northward translation of terranes west of the Bucaramanga fault during the Early Jurassic, and the similarity between the early Mesozoic stratigraphy and tectonic setting of the Payandé terrane with the Late Permian transtensional rift of the Eastern Cordillera of Peru and Bolivia indicate that the areas were adjacent in early Mesozoic times. New geochronological, petrological, stratigraphic, and structural research is necessary to test this hypothesis, including additional paleomagnetic investigations to determine the paleolatitudinal position of the Central Cordillera and adjacent tectonic terranes during the Triassic–Jurassic. Two stretching events are suggested for the Cretaceous: Berriasian–Hauterivian (144–127 Ma) and Aptian–Albian (121–102 Ma). During the Early Cretaceous, marine facies accumulated on an extensional basin system. Shallow-marine sedimentation ended at the end of the Cretaceous due to the accretion of oceanic terranes of the Western Cordillera. In Berriasian–Hauterivian subsidence curves, isopach maps and paleomagnetic data imply a (>180 km) wide, asymmetrical, transtensional half-rift basin existed, divided by the Santander Floresta horst or high. The location of small mafic intrusions coincides with areas of thin crust (crustal stretching factors >1.4) and maximum stretching of the subcrustal lithosphere. During the Aptian–early Albian, the basin extended toward the south in the Upper Magdalena Valley. Differences between crustal and subcrustal stretching values suggest some lowermost crustal decoupling between the crust and subcrustal lithosphere or that increased thermal thinning affected the mantle lithosphere. Late Cretaceous subsidence was mainly driven by lithospheric cooling, water loading, and horizontal compressional stresses generated by collision of oceanic terranes in western Colombia. Triassic transtensional basins were narrow and increased in width during the Triassic and Jurassic. Cretaceous transtensional basins were wider than Triassic–Jurassic basins. During the Mesozoic, the strike-slip component gradually decreased at the expense of the increase of the extensional component, as suggested by paleomagnetic data and lithosphere stretching values. During the Berriasian–Hauterivian, the eastern side of the extensional basin may have developed by reactivation of an older Paleozoic rift system associated with the Guaicáramo fault system. The western side probably developed through reactivation of an earlier normal fault system developed during Triassic–Jurassic transtension. Alternatively, the eastern and western margins of the graben may have developed along older strike-slip faults, which were the boundaries of the accretion of terranes west of the Guaicáramo fault during the Late Triassic and Jurassic. The increasing width of the graben system likely was the result of progressive tensional reactivation of preexisting upper crustal weakness zones. Lateral changes in Mesozoic sediment thickness suggest the reverse or thrust faults that now define the eastern and western borders of the EC were originally normal faults with a strike-slip component that inverted during the Cenozoic Andean orogeny. Thus, the Guaicáramo, La Salina, Bitúima, Magdalena, and Boyacá originally were transtensional faults. Their oblique orientation relative to the Mesozoic magmatic arc of the Central Cordillera may be the result of oblique slip extension during the Cretaceous or inherited from the pre-Mesozoic structural grains. However, not all Mesozoic transtensional faults were inverted.  相似文献   
2.
The differentiation of units in the Sierra de Almagro has been a source of controversy. There were defined the Almagride and Ballabona–Cucharón complexes, the former considered by several authors as part of a Subbetic metamorphosed and outcropping in a tectonic window. In this study, the units of Ballabona, Almagro and Cucharón are integrated into a single one, that of Tres Pacos, because they correspond to different parts of the same stratigraphic series. This unit is tectonically over the Nevado–Filabride Complex. The existence of the Almagride and Ballabona–Cucharón complexes is discarded and their units form part of the Alpujarride Complex. To cite this article: C. Sanz de Galdeano, F.J. Garc??a Tortosa, C. R. Geoscience 334 (2002) 355–362.  相似文献   
3.
Using data from glacial geomorphology, tephra–soil stratigraphy and mineralogy, palynology, and radiocarbon dating, a sequence of glacial and bioclimatic stades and interstades has been identified for the last ca. 50000 yr in the Ruiz-Tolima massif, Cordillera Central, Colombia. Six Pleistocene cold stades separated by warmer interstades occurred: before 48000, between 48000 and 33000, between 28000 and 21000, from ≥16000 to ca. 14000, ca. 13000–12400, and ca. 11000–10000 yr BP. Although these radiocarbon ages are minimum-limiting ages obtained from tephra layers on top of tills, the tills are not significantly older because most are bracketed by dated tephra sets in measured stratigraphic sections. Two minor moraine stages likely reflect glacier standstill during cold intervals ca. 7400 yr BP and slightly earlier. Finally, glaciers readvanced between the seventeenth and nineteenth centuries. In contrast to the ice-clad volcanoes of the massif, ca. 34 km2 in area above an altitude of ca. 4800 m, the ice cover expanded to 1200 km2 during the Last Glacial Maximum (LGM) and was still 800 km2 during Late-glacial time (LGT). Glacier reconstructions based on the moraines suggest depression of the equilibrium line altitude (ELA) by ca. 1100 m during the LGM and 500–600 m during LGT relative to the modern ELA, which lies at ca. 5100 m in the Cordillera Central. Glaciers in this region apparently reached their greatest extent when the climate was cold and wet, e.g. during stades corresponding to Oxygen Isotope Stage 3; glaciers were still expanding during the LGM ca. 28000–21000 yr BP, but they shrank considerably after 21000 yr BP because of greatly reduced precipitation. © 1997 John Wiley & Sons, Ltd.  相似文献   
4.
A palaeo- and rock-magnetic study was carried out on the Jurassic–Cretaceous Guaniguanico Cordillera (15 sites, 112 oriented cores) in order to define a preliminary magnetostratigraphy and to obtain some constraints on the tectonic evolution of western Cuba. Rock-magnetic experiments indicate Ti-poor titanomagnetites as principal remanence carriers. Two magnetic phases seem to be present in a few samples: some spinels, which saturate at moderate magnetic fields and goethite, with higher coercivity. The presence of hematite (or mixture of spinels and hematite) is apparent in two units. In most cases the characteristic palaeodirections could be determined above 300°C. Eleven sites yield normal magnetic polarity and four reverse. The polarity zones can be tentatively correlated to chrons CM29–C24 in the reference geomagnetic polarity time scale. The mean palaeodirection calculated from all sites is Dm=335.7°, Im=43.1°, K=11, α95=12.3 and N=15. The corresponding palaeopole is Plat=66.4°, Plong=205.8°, K=13, and A95=11.1. This pole is not significantly different from North American Jurassic–Cretaceous poles. This suggests that no major latitudinal displacements and deformation have occurred since the Jurassic, in contrast to some previously proposed tectonic models.  相似文献   
5.
The Neogene Volcanic Province (NVP) within the Betic Cordillera (SE Spain) consists of three main metapelitic enclave suites (from SW to NE: El Hoyazo, Mazarrón and Mar Menor). Since the NVP represents a singular place in the world where crustal enclaves were immediately quenched after melting, their microstructures provide a “photograph” of the conditions at depth just after the moment of the melting.

The thermobarometric information provided by the different microstructural assemblages has been integrated with the geophysical and geodynamical published data into a model of the petrologic evolution of the Mar Menor enclaves. They were equilibrated at 2–3 kbar, 850–900 °C, and followed a sequence of heating melt producing reactions. A local cooling event evidenced by minor melt crystallization preceded the eruption.

The lower crustal studies presented in this work contribute to the knowledge of: (i) the partial melting event beneath the Mar Menor volcanic suite through a petrologic detailed study of the enclaves; (ii) how the microstructures of fast cooled anatectic rocks play an important role in tracing the magma evolution in a chamber up to the eruption, and how they can be used as pseudothermobarometers; (iii) the past and current evolution of the Alborán Domain (Betic Cordillera) and Mediterranean Sea, and how the base of a metapelitic crust has melted within an active geodynamic setting.  相似文献   

6.
The Bajo Segura basin (eastern Betic Cordillera) has one of the most complete late Miocene–early Pliocene marine records of the western Mediterranean. An updated planktonic foraminifer zonal scheme based on recent astronomically tuned biozones is presented for this interval, documenting a complete succession of biostratigraphic markers, from biozone MMi9 (earliest Tortonian) to MPl3 (latest early Pliocene), of likely significance for regional-scale correlation throughout the Mediterranean. The findings reveal a series of intrazonal events (some unreported until now in the Mediterranean Neogene basin), including the particularly interesting two influxes of the Globorotalia miotumida group during the Tortonian. These biostratigraphic findings are the basis for a framework of the major allostratigraphic units in the basin based on planktonic foraminifer event-stratigraphy: synthems Tortonian I, Tortonian II, Tortonian-Messinian I, Messinian II, and Pliocene. In addition, the timing of the main tectono-sedimentary and palaeogeographic events throughout the basin's evolution has been further constrained. Our results suggest that, at least in the Bajo Segura basin, the late-Messinian barren interval (non-distinctive zone) can be considered an ecobiostratigraphic zone (cenozone) characterized by dwarf fauna of planktonic foraminifera. Consequently, the Bajo Segura composite section can be regarded as a biostratigraphic reference section for Neogene basins in the Betic Cordillera and hence also in the Western Mediterranean.  相似文献   
7.
—The Rif belt forms with the Betic Cordilleras an asymmetric arcuate mountain belt (Gibraltar Arc) around the Alboran Sea, at the western tip of the Alpine orogen. The Gibraltar Arc consists of an exotic terrane (Alboran Terrane) thrust over the African and Iberian margins. The Alboran Terrane itself includes stacked nappes which originate from an easterly, Alboran-Kabylias-Peloritani-Calabria (Alkapeca) continental domain, and displays Variscan low-grade and high-grade schists (Ghomarides-Malaguides and Sebtides-Alpujarrides, respectively), shallow water Mesozoic sediments (mainly in the Dorsale Calcaire passive margin units), and infracontinental peridotite slices (Beni Bousera, Ronda). During the Late Cretaceous?-Eocene, the Alboran Terrane was likely located south of a SE-dipping Alpine-Betic subduction (cf. Nevado-Filabride HP-LT metamorphism of central-eastern Betics). An incipient collision against Iberia triggered back-thrust tectonics south of the deformed terrane during the Late Eocene-Oligocene, and the onset of the NW-dipping Apenninic-Maghrebian subduction. The early, HP-LT phase of the Sebtide-Alpujarride metamorphism could be hypothetically referred to the Alpine-Betic subduction, or alternatively to the Apenninic-Maghrebian subduction, depending on the interpretation of the geochronologic data set. Both subduction zones merged during the Early Miocene west of the Alboran Terrane and formed a triple junction with the Azores-Gibraltar transform fault. A westward roll back of the N-trending subduction segment was responsible for the Neogene rifting of the internal Alboran Terrane, and for its coeval, oblique docking onto the African and Iberian margins. Seismic evidence of active E-dipping subduction, and opposite paleomagnetic rotations in the Rif and Betic limbs of the Gibraltar Arc support this structurally-based scenario.  相似文献   
8.
The Granada Basin (Central Betic Cordillera), one of the most seismically active areas of the Iberian Peninsula, is currently subjected to NW-SE compression and NE-SW extension. The present day extension is accommodated by normal faults with various orientations but particularly with a NW-SE strike. At the surface, these active NW-SE normal faults are mainly concentrated on the NE part of the Basin. In this part we have selected a 15-km long segment where several active normal faults crop out. Using the marine Tortonian rocks as a reference, we have calculated a minimum extensional rate of 0.15-0.30 mm/year. The observed block rotation, the listric geometry of faults at depth and the distribution of seismicity over the whole Basin, indicate that this rate is a minimum value. In the framework of an interdisciplinary research project a non-permanent GPS-network has been established in the central sector of Betic Cordillera to monitor the crustal deformations. The first two observation campaigns were done in 1999 and 2000.  相似文献   
9.
Several studies on earthquake occurrence and associated faulting have demonstrated that both phenomena have a scale-invariant behavior which can be analyzed by means of a set of non-integer dimensions(Dq) describing their fractal properties and the calculation of multi-fractal spectra.It is the case that the behavior of these spectra is asymptotic at the ends of the variation interval of q,which is a real number that enters into the definition of the partition function of the dataset.The difference between the extreme values,called multi-fractal spectrum slope,is used to investigate the heterogeneity of the spatial distribution of earthquakes and fault systems.In this paper we focus on the Betic Cordillera,southeastern Spain,which is commonly considered the contact between the Eurasian and African plates and has an important seismic activity in the context of the Iberian Peninsula.Some of the most conspicuous Iberian earthquakes,such as the 1829 mb6.3 Torrevieja and the 1884 mb6.1 Alhama de Granada earthquakes occurred in this mountain range and both reached intensity X.The present work implies a new analysis based on the slope of multi-fractal spectra and referred to the historical seismicity of the region,specifically b-value(frequency distribution of earthquakes respect to magnitude),epicentral location,seismic energy and faulting.On this basis we propose a seismotectonic zonation that is contrasted with the stress state and the geodynamical evolution of the Betic Cordillera.  相似文献   
10.
Tortonian calcarenites of the Betic Cordillera were deposited in coastal or very shallow marine environments and represent an ideal marker for estimating vertical movements from the late Miocene to the Present. A map showing the heights at which these Tortonian marine rocks are situated has a clear correlation with the present relief, indicating that today's relief has been formed since the Tortonian. There is also a good correlation between present relief and the Bouguer anomaly distribution in the Betic Cordillera, as well as with crustal thickness. Likewise, the present relief is directly related to the geodynamic setting of a horizontal N–S to NNW–SSE compression and an almost perpendicular extension, along with isostatic readjustment, existing in the Betic Cordillera from the Tortonian. As a result of these regional stresses, faults and folds have produced notable vertical movements. The highest rates of uplift of the Betic Cordillera coincide with large antiforms, in particular those of the Sierra Nevada and the Sierra Filabres. Several subsiding sectors also exist (for example, the Granada Basin or the Guadalquivir Basin). The foreland Guadalquivir Basin has a complex history because the uplift in its eastern sector and subsidence in the western sector coexisted during the late Tortonian. Today the whole Betic Cordillera is characterized by differential regional uplift, even in the aforementioned subsiding sectors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号