首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   4篇
自然地理   1篇
  2017年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
This article is intended to explain the snow avalanche occurrence, as a natural phenomenon directly influenced by the local natural conditions, for the well-delimited area represented by the Piatra Mica massif, belonging to the Piatra Craiului mountain range (southern Carpathians). In this respect, depending on the factors that may trigger or encourage the avalanches, some vulnerable areas with avalanche occurring conditions have been identified, based on the analysis of the relationships among the factors controlling the avalanche vulnerability in the study area. These factors are mainly represented by the slope aspect, which induces from the very beginning some specific features for each type of slope (north-, east-, south and west-facing slopes), the geological structure, slope gradient and topography. At the same time, the general climatic and biological features have been taken into account, from the point of view of their importance for avalanche occurrence and distribution. Depending on the microrelief exhibited by the avalanche chutes, one can establish distinct dynamical features for each of the four major slopes of the massif. It is worth mentioning that for this study area, this is the first paper dealing with avalanche phenomenon, vulnerable space, control factors and landscape dynamics. In accomplishing this demarche, we used detailed mappings in the field in several stages, the processing of satellite images, analytical (declivities, the exposure of slopes, etc.) and synthetic maps from which the dynamic of sectors with avalanches resulted. The findings of this investigation may further be employed for solving the problems raised by avalanche-prone areas, as well as for devising a better strategy for the effective management of the mountain realm.  相似文献   
2.
Rock avalanches constitute geodynamic phenomena of great beauty and extraordinary power, but at the same time they usually mean destruction of life found in their way. Therefore, it is of prime importance to acquire information on the dynamics of such debris streams so that their kinematic behavior can be evaluated in regions where they present a potential risk to human life and life in general. The energy loss due to dissipative interaction is greater than previously estimated. Starting with the energy conservation equation, one formula for the overall frictional loss, and another for the movement velocity of the predicted trajectory of a potential rock avalanche body is estimated.  相似文献   
3.
Global landslide and avalanche hotspots   总被引:6,自引:7,他引:6  
Allocating resources for natural hazard risk management has high priority in development banks and international agencies working in developing countries. Global hazard and risk maps for landslides and avalanches were developed to identify the most exposed countries. Based on the global datasets of climate, lithology, earthquake activity, and topography, areas with the highest hazard, or “hotspots”, were identified. The applied model was based on classed values of all input data. The model output is a landslide and avalanche hazard index, which is globally scaled into nine levels. The model results were calibrated and validated in selected areas where good data on slide events exist. The results from the landslide and avalanche hazard model together with global population data were then used as input for the risk assessment. Regions with the highest risk can be found in Colombia, Tajikistan, India, and Nepal where the estimated number of people killed per year per 100 km2 was found to be greater than one. The model made a reasonable prediction of the landslide hazard in 240 of 249 countries. More and better input data could improve the model further. Future work will focus on selected areas to study the applicability of the model on national and regional scales.  相似文献   
4.
Abstract

As interest in outdoor activities in remote areas is increasing, there is a strong need for improved avalanche forecasting at the regional scale. Due to important logistical and safety matters, avalanche terrain measurements (avalanche observations, snowpack profiles, and stability tests) are not always possible for practitioners/forecasters. An interesting alternative would be to analyze the snowpack without these challenges by using snow model outputs. The SNOWPACK model is currently used operationally for avalanche forecasting and research in the Swiss Alps. Thus, this paper presents a summary of analyses that have been conducted to assess the potential of using the SNOWPACK model driven with both in-situ and forecasted meteorological data in three different Canadian climate and geomorphological contexts. A comparison of meteorological data from in-situ and predicted datasets for two winters shows that the GEMLAM weather model is the most accurate for the three climatic contexts of this project, but also showed a bias proportional to precipitation intensity/rate. Snow simulations forced with GEMLAM are the closest to field measurements. Finally, predictions of persistent weak layers have been validated using the InfoEx platform from Avalanche Canada. Crust and surface hoar formation dates agree with the information reported in InfoEx.  相似文献   
5.
This paper demonstrates the application of cost effectiveness analysis and cost benefit analysis to alternative avalanche risk reduction strategies in Davos, Switzerland. The advantages as well as limitations of such analysis for natural hazards planning are discussed with respect to 16 avalanche risk reduction strategies. Scenarios include risk reduction measures that represent the main approaches to natural hazards planning in Switzerland, such as technical, organisational, and land use planning measures. The methodologies used outline how concepts and techniques from risk analysis, hazard mapping, Geographic Information System, and economics can be interdisciplinary combined. The results suggest important considerations, such as possible sources of uncertainty due to different choices in the calculation of cost effectiveness ratio and net present value. Given the parameters and assumptions, it seems as if the current approach to avalanche risk reduction in the study area approximates to economic and cost efficiency and serves the aim of reducing risk to human fatalities.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号