首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3998篇
  免费   1290篇
  国内免费   1944篇
测绘学   61篇
大气科学   3979篇
地球物理   766篇
地质学   1048篇
海洋学   252篇
天文学   15篇
综合类   188篇
自然地理   923篇
  2024年   69篇
  2023年   129篇
  2022年   214篇
  2021年   260篇
  2020年   255篇
  2019年   344篇
  2018年   240篇
  2017年   297篇
  2016年   240篇
  2015年   301篇
  2014年   395篇
  2013年   452篇
  2012年   409篇
  2011年   371篇
  2010年   280篇
  2009年   314篇
  2008年   287篇
  2007年   384篇
  2006年   325篇
  2005年   252篇
  2004年   202篇
  2003年   207篇
  2002年   152篇
  2001年   145篇
  2000年   141篇
  1999年   87篇
  1998年   79篇
  1997年   80篇
  1996年   60篇
  1995年   58篇
  1994年   55篇
  1993年   31篇
  1992年   29篇
  1991年   22篇
  1990年   9篇
  1989年   15篇
  1988年   16篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
排序方式: 共有7232条查询结果,搜索用时 15 毫秒
1.
Few long-term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast-growing species (Pinus radiata, Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long-term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long-term mean. Pre-drought runoff ratios were <0.2 under 8-year-old Eucalyptus; >0.4 under 21-year-old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide-treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.  相似文献   
2.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
3.
The precipitation patterns in flood season over China associated with the El Niño/Southern Oscillation (ENSO) are investigated, especially in the eastern China, using the rather long period rainfall data in this century. The results show that there were remarkable differences between the precipitation patterns in flood seasons of ENSO warm phase (El Niño year) and cold phase (La Niña year), as well as between the patterns in El Niño years and their following years. The most parts of China received below normal rainfall in flood season of the onset years of El Niño events, but the coastal area of Southeast China received above normal amounts. Comparatively, the most parts of China received above normal rainfall in flood season of the following years of El Niño events, but the eastern part of the reaches among the Huanghe (Yellow) River, the Huaihe River and the Haihe River, and the Northeast China received less. During ENSO cold phase, the reaches of the Changjiang (Yangtze) River and the North China received more amounts than normal rainfall in flood season of the onset years of La Niña events, and the other regions of China received less. In the following years of La Niña events, the coastal area of the Southeast China, the most part of the Northeast China and the regions between the Huanghe River and the Huaihe River received more precipitation during flood seasons, but the other parts received below normal precipitation.  相似文献   
4.
为建立社会主义市场经济的地矿工作新秩序,本文对国有地矿企业的经营者(厂长、经理)这一特殊群体进行了分析。着重研究了新形势下企业经营者实行年薪制的问题。指出年薪制就是以企业一个生产经营周期为单位确定经营者的报酬,这一周期通常为一年。进而阐述了为什么要实行企业经营者年薪制;企业经营者的收入应与职工工资完全脱钩;采用基础报酬加效益报酬的方法确定收入等等。并构想了实行经营者年薪制所需要的外部环境:建立经营者人才市场、经营者要能进能出、实行任职资格制度、建立风险机制、按劳动力市场经济规律办事。  相似文献   
5.
The main reasons for the high content of inorganic N and its increase by several times in the Changjiang River and its mouth during the last 40 years were analysed in this work. The inorganic N in precipitation in the Changjiang River catchment mainly comes from gaseous loss of fertilizer N, N resulting from the increases of population and livestock, and from high temperature combustions of fossil fuels. N from precipitation is the first N source in the Changjiang River water and the only direct cause of high content of inorganic N in the Changjiang River and its mouth. The lost N in gaseous form and from agriculture non-point sources fertilizer comprised about 60% of annual consumption of fertilizer N in the Changjiang River catchment and were key factors controlling the high content of inorganic N in the Changjiang River mouth. The fate of the N in precipitation and other N sources in the Changjiang River catchment are also discussed in this paper.  相似文献   
6.
Measurements of the concentrations of carbonyl sulfide (COS) in the marine atmosphere were made over a period of two years in the southern Indian Ocean (Amsterdam Island, 37°50 S–77°31 E; March 1987–February 1988 and April 1989–February 1990). The mean atmospheric COS concentration for the whole period was 475±48 pptv (n=544). Atmospheric COS concentrations show no significant seasonal variation with a summer to winter ratio of 1.05. Taking into account the observed variability of the atmospheric COS concentration (10%), a value of 1.4 yr is estimated as a lower limit for the atmospheric COS lifetime. A comparison of the COS data at Amsterdam Island with those obtained in the Southern Hemisphere in the past 12 yr does not reveal any significant trend in the tropospheric background COS mixing ratio.  相似文献   
7.
气候变化对塔里木河来自天山的地表径流影响   总被引:21,自引:10,他引:11  
塔里木河水资源主要来自天山南坡两条源流,选择西段阿克苏河和中段开都河-孔雀河作为研究区.1956-2003年研究河源山区气温呈持续升温且降水波动增加的趋势,其中1995-2003年升温强劲,升温速率高出48 a期间平均的3倍以上;降水自1986年后持续增加,20世纪90年代较80年代增幅达18%,并显示出河源山区湿岛向塔里木盆地扩展.因高山缺少气象观测,出山径流过程变化可以综合反映中高山带的气候变化.塔里木河来自天山的地表径流在1986-2003年间持续增长,以冰川融水补给为主的库玛拉克河,1994年以来年径流量增加已在前期平均值基础上提升了一个台阶;开都河以降水径流补给为主,1986-2002年出现了观测记录以来的丰水期,并使1986年后博斯腾湖水位快速上升,恢复到1958年记录的最高水位以上.两河年径流变化趋势基本相似,但也显示有西、中段的气候变化局部差异,出现丰枯水期的不一致;然而,在近16 a升温过程中,年径流增长幅度和快慢相近.  相似文献   
8.
A nutrient dynamic model coupled with a 3D physical model has been developed to study the annual cycle of phytoplankton production in the Yellow Sea. The biological model involves interactions between inorganic nitrogen (nitrate and ammonium), phosphate and phytoplankton biomass. The model successfully reproduces the main features of phytoplankton-nutrient variation and dynamics of production. 1. The well-mixed coastal water is characterized by high primary production, as well as high new production. 2. In summer, the convergence of tidal front is an important hydrodynamic process, which contributes to high biomass at frontal areas. 3. The evolution of phytoplankton blooms and thermocline in the central region demonstrate that mixing is a dominant factor to the production in the Yellow Sea. In this simulation, nitrate- and ammonium-based productions are estimated regionally and temporally. The northern Yellow Sea is one of the highly ranked regions in the Yellow Sea for the capability of fixing carbon and nitrogen. The annual averaged f-ratio of 0.37 indicates that regenerated production prevails over the Yellow Sea. The result also shows that phosphate is the major nutrient, limiting phytoplankton growth throughout the year and it can be an indicator to predict the bloom magnitude. Finally, the relative roles of external nutrient sources have been evaluated, and benthic fluxes might play a significant role in compensating 54.6% of new nitrogen for new production consumption.  相似文献   
9.
A total of 67 samples from the upper and lower sediment traps in the central South China Sea were analyzed, which were collected during 1993~1996. It is indicated that the distribution of stable isotope values, surface primary productivity, fluxes of total particulate matter, carbonate, biogenic opal, organic carbon, planktonic foraminiferal species and their total amount exhibit obviously seasonal and annual fluctuations. High values of the fluxes occurred in the prevailing periods of the northeastern and southwestern monsoons, and the low values occurred during the periods between the two monsoons. The fluxes of some planktonic foraminiferal species (Globigerinoides sacculifer, G. ruber, Globigerinita glutinata, Neogloboquadrina dutertrei) and their percentages also exhibit two prominent peaks during the prevailing periods of the northeastern and southwestern monsoons respectively, while those of Globigerina bulloides, Globorotalia menardii and Pulleniatina obliquiloculata only exhibit one peak in the prevailing periods of the northeastern monsoon. In addition, fluxes and percentages of Globigerinoides sacculifer and Globorotalia menardii as well as the fluxes of carbonate and total amount of planktonic foraminifera decrease gradually from 1993 to 1996, and those of Globigerina bulloides, Globigerinita glutinata and biogenic opal increase gradually from 1993 to 1996. The fluxes of carbonate and organic carbon in the upper trap are higher than those in the lower one. The study indicates that the seasonal and annual variations of the sediment fluxes and planktonic foraminiferal species are mainly controlled by the changes of surface primary productivity and hydrological conditions related to the East Asian monsoon. The lower carbonate and organic carbon fluxes in the lower trap are related to the dissolution.  相似文献   
10.
Atmospheric forcing of the eastern tropical Pacific: A review   总被引:1,自引:8,他引:1  
The increase in marine, land surface, atmospheric and satellite data during recent decades has led to an improved understanding of the air–sea interaction processes in the eastern tropical Pacific. This is also thanks to extensive diagnoses from conceptual and coupled ocean–atmosphere numerical models. In this paper, mean fields of atmospheric variables, such as incoming solar radiation, sea level pressure, winds, wind stress curl, precipitation, evaporation, and surface energy fluxes, are derived from global atmospheric data sets in order to examine the dominant features of the low level atmospheric circulations of the region. The seasonal march of the atmospheric circulations is presented to depict the role of radiative forcing on atmospheric perturbations, especially those dominating the atmosphere at low levels.In the tropics, the trade winds constitute an important north–south energy and moisture exchange mechanism (as part of the low level branch of the Hadley circulation), that determines to a large extent the precipitation distribution in the region, i.e., that associated with the Inter-Tropical Convergence Zone (ITCZ). Monsoonal circulations also play an important role in determining the warm season precipitation distribution over the eastern tropical Pacific through a large variety of air–sea–land interaction mechanisms. Westward traveling waves, tropical cyclones, low latitude cold air intrusions, and other synoptic and mesoscale perturbations associated with the ITCZ are also important elements that modulate the annual rainfall cycle. The low-level jets of the Gulf of California, the Intra-Americas Sea (Gulf of Mexico and Caribbean Sea) and Chocó, Colombia are prominent features of the eastern tropical Pacific low-level circulations related to sub-regional and regional scale precipitation patterns. Observations show that the Intra-Americas Low-Level Jet intensity varies with El Niño/Southern Oscillation (ENSO) phases, however its origin and role in the westward propagation and development of disturbances that may hit the eastern tropical Pacific, such as easterly waves and tropical cyclones, are still unclear. Changes in the intensity of the trade winds in the Caribbean Sea and the Gulf of Mexico (associated with eastern tropical Pacific wind jets) exert an important control on precipitation by means of wind–topography interactions. Gaps in the mountains of southern Mexico and Central America allow strong wind jets to pass over the continent imprinting a unique signal in sea surface temperatures and ocean dynamics of the eastern tropical Pacific.The warm pools of the Americas constitute an important source of moisture for the North American Monsoon System. The northeastern tropical Pacific is a region of intense cyclogenetic activity, just west of the coast of Mesoamerica. Over the oceanic regions, large-scale properties of key variables such as precipitation, moisture, surface energy fluxes and wind stress curl are still uncertain, which inhibits a more comprehensive view of the region and stresses the importance of regional field experiments. Progress has been substantial in the understanding of the ocean and atmospheric dynamics of the eastern tropical Pacific, however, recent observational evidence such as that of a shallow meridional circulation cell in that region, in contrast to the classic concept of the Hadley-type deep meridional circulation, suggests that more in situ observations to validate theories are still necessary.This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific Ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号