首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   8篇
  国内免费   7篇
测绘学   60篇
大气科学   5篇
地球物理   17篇
地质学   24篇
海洋学   1篇
天文学   1篇
综合类   20篇
自然地理   8篇
  2022年   2篇
  2021年   5篇
  2020年   6篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   11篇
  2015年   9篇
  2014年   10篇
  2013年   17篇
  2012年   8篇
  2011年   8篇
  2010年   5篇
  2009年   15篇
  2008年   10篇
  2007年   6篇
  2006年   2篇
  2005年   7篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
1.
Application of snowmelt runoff model for water resource management   总被引:1,自引:0,他引:1  
Snow‐covered areas (SCAs) are the fundamental source of water for the hydrological cycle for some region. Accurate measurements of river discharge from snowmelt can help manage much needed water required for hydropower generation and irrigation purposes. This study aims to apply the snowmelt runoff model (SRM) in the Upper Indus basin by the Astore River in northern Pakistan for the years 2000 to 2006. The Shuttle Radar Topographic Mission (SRTM) data are used to generate the Digital Elevation Model (DEM) of the region. Various variables (snow cover depletion curves (SCDCs), temperature and precipitation) and parameters (degree‐day factor, recession coefficient, runoff coefficients, time lag, critical temperature and temperature lapse rate) are used as input in the SRM. However, snow cover data are direct and an important input to the SRM. Satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to estimate the SCA. Normalized difference snow index (NDSI) algorithm is applied for snow cover mapping and to differentiate snow from other land features. Nash–Sutcliffe coefficient of determination (R2) and volume difference (DV) are used for quality assessment of the SRM. The results of the current research show that for the study years (2000–2006), the average value of R2 is 0·87 and average volume difference DV is 1·18%. The correlation coefficient between measured and computed runoff is 0·95. The results of the study further show that a high level of accuracy can be achieved during the snowmelt season. The simulation results endorse that the SRM in conjunction with MODIS snow cover product is very useful for water resource management in the Astore River and can be used for runoff forecasts in the Indus River basin in northern Pakistan. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
2.
The sensitivity of streamflow simulated with the Soil and Water Assessment Tool (SWAT) model to Digital Elevation Model (DEM) resolution, DEM source and DEM resampling technique is still poorly understood. The objective of this study is to compare SWAT model streamflow estimates in the Johor River Basin (JRB), Malaysia for DEMs differing in resolution (from 20 to 1500 m), sources (Shuttle Radar Topography Mission: SRTM v4.1, Advanced Space-borne Thermal Emission and Reflection Radiometer: ASTER GDEM2, EarthEnv-DEM90 and Global Multi-resolution Terrain Elevation Data 2010: GMTED2010) and resampling technique (nearest neighbour, bilinear interpolation, cubic convolution and majority). The key findings were as follows: (1) SRTM v4.1 (Root Mean Square Error (RMSE) = 11.16 m) and EarthEnv-DEM90 (RMSE = 12.4 m) had better vertical accuracy over the JRB compared to the ASTER GDEM2 (RMSE = 16.95 m); (2) Accurate annual streamflow simulations were obtained by using nearly all of the DEM resolutions, as pointed out by a relative error (RE) lower than 7% from 20 to 50 m and from 100 to 800 m DEMs; (3) Prediction errors were the lowest for ASTER GDEM2 (RE = 3.9%), followed by SRTM v4.1 (RE = 5.4%), EarthEnv-DEM90 (RE = 6.3%), and GMTED2010 (RE = 7.3%); (4) the majority and nearest neighbour resampling techniques performed the best (RE of 6.0%), followed by bilinear interpolation (RE of 7.2%) and cubic convolution (7.5%). The study indicates that DEM resolution is the most sensitive SWAT model DEM parameter compared to DEM source and DEM resampling technique for streamflow simulation within SWAT.  相似文献   
3.
The Central Africa Fold Belt (CAFB) is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years. However, favorable areas for gold exploration are poorly known. This paper presents (1) the kinematics of the brittle deformation in the Kékem area in the SW portion of the Central Cameroon Shear Zone and (2) constraints gold mineralization events with respect to the collisional evolution of the CAFB. The authors interpret that the conjugate ENE to E and NNW to NW trending lineament corresponds to the synthetic (R) and the antithetic (R’) shears, which accompanied the dextral slip along the NE to ENE striking shear. The latter coincides with the last 570–552 Ma D3 dextral simple shear-dominated transpression, which is parallel to the Bétaré Oya shear zone hosting gold deposits. Gold mineralizations, which mainly occurred during the last dextral shearing, are disseminated within quartz veins associated to Riedel’s previous structures reactivated due to late collisional activities of the CAFB as brittle deformation. Gold mineralizations occurred mainly during the 570–552 Ma D3 event. The reactivation, which might be due to dextral simple shear during mylonitzation, plausibly remobilized the early gold deposits hosted in syn-compressional rocks and/or possibly focused deep-sourced fluid mixed with those released by dehydration. Therefore, the Central Cameroon Shear Zone where Kékem is located, and which shows similar petrographical and structural features to those controling Batouri gold district, is a target area for gold exploration in Cameroon.  相似文献   
4.
利用高精度的SRTM 数字高程模型(DEM),定量勾画出青藏高原东南缘大尺度地形地貌的特征。分析表明,高原东南缘地貌特征为“负地形”,即海拔高程与地形坡度,与地形起伏度之间均为负相关关系,与高原中部的“正地形”--海拔高程或地形坡度与地形起伏度之间呈正相关关系,形成鲜明对比。但是,在高原东南缘,在河谷之间保留有高海拔、低起伏的残留面。这些残留面与高原内部的平坦面具相似的渐变地貌特征,从腹地的正地形逐渐变为川西的高海拔平坦面与深切河谷相间的负地形。虽然随着河流下切深度往南逐渐增加,残留面虽越来越少,但仍然可以识别,最终终止在雅砻江逆冲断裂带附近,该断裂带以南地区没有明显负地形特征。北东向展布的雅砻江逆冲断裂带对应着50~200 km宽的地形相对陡变带。综合区域新构造和构造地貌研究的最新成果表明: 1)雅砻江逆冲断裂带可能代表着现今正经受侵蚀改造和弱化的高原老边界,该边界以北和以南地区抬升历史不同; 2)三江地区的峰值抬升期已过,目前以侵蚀为主。虽然不能排除与河流侵蚀对应的均衡反弹抬升作用,但具有真正意义的地壳增厚型的构造抬升较弱。国际上流行的高原东缘下地壳流动模式的依据之一是从高原内外流分界线到南中国海,存在一个区域上延伸数千公里的抬升前低海拔“类夷平面”的残留面。地貌特征,构造和地质综合分析都表明高原东缘不存在这样的类夷平面,不支持解释高原东缘地形演化和相应构造变形的下地壳流动模式。  相似文献   
5.
基于SRTM-DEM的阿尔泰山构造地貌特征分析   总被引:1,自引:0,他引:1  
基于美国SRTM-DEM数据,利用彩色晕染、密度分割与GIS空间统计分析等技术,并结合地质资料,通过地形高程、地表坡度 及地形剖面等分析手段,对阿尔泰山的构造地貌特征进行初步分析。研究表明,阿尔泰山脉平均海拔约1 790 m,平均坡度约21° ,其高海拔与高坡度的现代地貌特征,主要与强烈的断裂构造活动有关; 山脉严格受到以北西向为主的断裂构造活动的影响与控 制,其发育的构造地貌单元基本上呈北西走向特征; 山脉阶梯状地貌特征明显,共发育5级剥夷面,不同级剥夷面所处的海拔不一 样,同级剥夷面具有东北侧高于西南侧,山脉东、中段高于西段的特点。  相似文献   
6.
基于数据融合的SRTM数据空洞填补方法   总被引:7,自引:0,他引:7  
总结国内外对SRTM数据空洞的填补方法,指出基于内插的填补方法无法满足大区域SRTM数据处理的需求。提出在内插的基础上进行数据融合的空洞填补方法,并以实例验证了该方法是一种获取完整地形数据的有效途径。  相似文献   
7.
本文分析了ASTER GDEM和SRTM DEM的获取方式,通过对两者在中国及周边区域高程的对比分析,得出两者高程间存在系统误差,前者高程比后者平均低4.9m。ASTER GDEM在许多区域特别是水域及高山区常存在明显粗差;SRTM DEM在特别是高山区域会出现空白区域,但其有效区域层次清晰、细节分明,无明显粗差,可靠性高。经过填补及高差约束限制修复,生成了无空白区域的SRTM DEM和可靠性更高的ASTER GDEM。  相似文献   
8.
为揭示我国SRTM3DEM数据高程精度质量,结合已开展过SRTM3DEM高程精度质量评价工作的局部地区的研究,考虑空间分布情况,选取新疆、辽宁、山东、浙江、海南5个地区的平原、丘陵、盆地、山地等地形区域作为典型研究区,并以1∶5万DEM为假定真值、以1∶25万DEM为参照,通过DEM面误差可视化分析、DEM面误差信息熵模型、中误差模型等方法对SRTM3DEM数据高程精度质量做了分析。计算结果表明我国SRTM3DEM数据高程精度质量受地形影响并存在一定的空间差异性,同时我国范围内SRTM3DEM数据高程精度质量整体上要高于1∶25万DEM。  相似文献   
9.
为全面了解航天飞机雷达测图计划(shuttle Radar topography mission,SRTM)高程数据的精度及误差特征,利用精度更高的ICESat/GLAS激光高度计数据(简称ICESat高度计数据)为参照数据,以具有多种地貌类型的中国青藏高原地区为实验区,采用双线性插值算法分析了SRTM在中国青藏高原地区的高程精度,以及SRTM高程数据与地形因子(坡度和坡向)间的关系。实验结果表明:在青藏高原地区,ICESat高度计数据与相对应的SRTM高程数据高度相关,相关系数高达0.999 8;SRTM的系统误差为2.36±16.48 m,中误差(RMSE)为16.65 m;当坡度低于25°时,SRTM高程数据精度随坡度增大而显著降低。此外,相对于ICESat高度计数据,SRTM在青藏高原地区N,NW和NE方向的测量值偏高,在S,SE和SW方向的测量值偏低。  相似文献   
10.
In the current study, the shuttle radar topography mission (SRTM) data, with~90 m horizontal resolution, were used to delineate the paleodrainage system and their mega basin extent in the East Sahara area. One mega-drainage basin has been detected, covering an area of 256 000 km2. It is classified into two sub mega basins. The Uweinate sub mega basin, which is composed of four main tributaries, collected water from a vast catchment region and drained eastward from the north, west, and southwest, starting at...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号