首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   46篇
  国内免费   90篇
测绘学   18篇
地球物理   77篇
地质学   331篇
综合类   36篇
自然地理   38篇
  2024年   5篇
  2023年   4篇
  2022年   9篇
  2021年   14篇
  2020年   17篇
  2019年   19篇
  2018年   16篇
  2017年   21篇
  2016年   17篇
  2015年   11篇
  2014年   15篇
  2013年   32篇
  2012年   14篇
  2011年   15篇
  2010年   12篇
  2009年   28篇
  2008年   30篇
  2007年   20篇
  2006年   29篇
  2005年   19篇
  2004年   17篇
  2003年   15篇
  2002年   13篇
  2001年   9篇
  2000年   39篇
  1999年   6篇
  1998年   6篇
  1997年   9篇
  1996年   9篇
  1995年   5篇
  1994年   9篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1989年   5篇
  1980年   1篇
  1977年   1篇
排序方式: 共有500条查询结果,搜索用时 15 毫秒
1.
The paper records evidences of neotectonic activities in the Gangotri glacier valley that are found to be responsible for the present-day geomorphic set-up of the area since the last phase of major glaciation. Geomorphological features indicate the presence of a large glacier in the valley in the geological past. Prominent planar structures present in the rocks were later on modified into sets of normal faults in the present-day Himalayan tectonic set-up giving rise to graben structures. The block nearest the snout is traversed by the NW-SE trending Gaumukh fault. A number of terraces mark the entrenchment of Bhagirathi River in this part. The contrasting drainage morphometric parameters of two sides of the valley and asymmetric recessional patterns of the tributary glaciers further document movement along the fault. The distribution and orientation of debris fans also seem to be controlled by neotectonic activity. The neotectonic activity that followed the process of deglaciation has brought the glacially carved, wide U- shaped valley in contact with the present-day fluvially incised narrow and relatively deep valley. The wider segments have become sites of active deposition of glacially eroded debris. The low gradient and excessive filling has resulted in the river attaining a braided nature in these segments.  相似文献   
2.
The Northwest Pakistan and Afghanistan frontier is located one of the most remote, inaccessible, and inhospitable part of the Himalayan orogenic belt. In this region, two of the world's largest and most distinct mountain belts intersect; the Karakoram Himalaya (mainly in Pakistan) and the Hindu Kush (mainly in Afghanistan). Located at high altitude, in a remote part of Northwest Pakistan, close to the border with Afghanistan, tribal villagers began excavating a series of adits into the steep mountain slopes, beneath glaciers, to extract valuable coal and carbonaceous shale resources. These were discovered in 1996, by the villagers, whilst hunting, and may represent some of the highest mine workings in the world. Small-scale mining operations subsequently developed using rudimentary mining methods and the mine became known as the Reshit or Pamir Coal Mine.The coal deposits are sedimentary, highly disturbed and tectonised, having been subjected to multiple phases of orogenic crustal deformation. The coal occurs as discrete lenses, several tens of metres in their lateral dimension, between steeply dipping, overturned and thrusted limestone beds of Jurassic age. The coal provided a vital, alternative source of fuel for the villagers since the local, traditional fuel supply was wood, which had become severely depleted, and imports of kerosene from neighbouring China and Afghanistan were too expensive.The mining operations experienced severe problems. These included several collapses of mine entrances, the failure of the adits to intersect the coal-bearing zones, the potential threat of geological hazards, mining-induced hazards and harsh high-altitude operating conditions, particularly during the winter months. International aid was provided to assist the villagers and a geological investigation was commissioned to investigate the problems at the mine.The geology of Karakoram Himalaya is relatively poorly understood. Until recently the region was restricted to foreign visitors and large areas of this mountain belt are virtually unmapped. Existing geological and topographic maps are difficult to obtain or are unavailable due to the close proximity of political frontiers, national borders and security reasons. The mineral resource potential of this region is virtually unknown. Few western geologists have visited this area due to its inaccessibility and political constraints, being situated close the frontiers with China, Afghanistan, and the disputed Pakistan and India territory of Kashmir.The Pakistan and Afghanistan border, is once again, now closed to foreign visitors. The objectives of this paper are to document the occurrence of coal and carbonaceous shale, at high altitude, in the Karakoram Himalaya and to provide details on the geology, geological hazards, reserves and labour-intensive mining operations. These observations and information may provide the basis for future mineral exploration, mining-geology, mining-engineering, feasibility studies and engineering geological investigation in the Karakoram Himalaya.  相似文献   
3.
Mountain ecosystem,on the earth,has plenty of natural resources. In Himachal Pradesh all the rivers are snowfed and therefore rich in water resources. These resources have been supporting enough for the generation of electricity through introducing hydropower projects since the last decade. However,every developmental activity has its own negative impacts on the surrounding environment. Due to the fragile nature of topography and delicacy of ecology of the Himalaya,it results in lot of disturbances because of high degree of human interferences like construction of major hydropower projects. The increased extent of geological hazards,such as landslides,rock fall and soil erosion,have mainly due to alike developmental interventions in the natural ecosystem. So understanding and analysing such impacts of the hydropower projects have mainly been on the environment in various forms but natural hazards have been frequent ones. The present study,therefore,focuses mainly on the Parbati Stage Ⅱ (800 MW) and the Parbati Stage Ⅲ (520 MW) hydropower projects; both of which fall within the Kullu district of Himachal Pradesh. Based on the perception survey of the local communities,the existing land use pattern,status of total acquired land of the residents by hydropower projects,frequent natural hazards and resultant loss to the local communities due to upcoming construction of hydropower projects surrounding to the Parbati Stage Ⅱ and Ⅲ have been analysed in the paper. Also,the preventive measures to mitigate these adverse impacts have been suggested to strengthen these projects in eco-friendly manner in the mountain context.  相似文献   
4.
柴达木盆地英雄岭地区新生代构造演化动力学特征   总被引:4,自引:0,他引:4  
通过分析柴达木盆地英雄岭 (YL)地区地质、2D/ 3D地震、遥感、重磁电和钻探等资料 ,提出了喜马拉雅运动几个阶段在该区的构造动力学响应特征。研究认为喜马拉雅运动晚期 ,英雄岭地区西南侧的阿卡腾能山因近SN向的区域挤压作用 ,产生了顺时针方向的旋转及隆升作用 ,从而在干柴沟一带形成了强烈的SE向局部挤压应力场 ,基底大幅隆升 ,而在英雄岭隆起的南侧则产生了局部的拉张构造环境。喜马拉雅山中期运动在该区的主要表现形式就是使古近纪的张扭构造环境转变为新近纪的坳陷构造环境 ,英雄岭西南的阿尔金地区发生隆升作用 ,沉积中心发生向东和向北的迁移。通过分析主干断裂、构造块体和沉积凹陷的分布特征等 ,得出喜马拉雅早期英雄岭及邻区发育局部拉张环境 ,为较为稳定的断陷湖盆发育期 ,沉积了一套优质烃源岩。英雄岭地区潜在勘探领域主要有构造裂缝型圈闭、地层岩性圈闭及渐新世断凸构造圈闭等。  相似文献   
5.
In the Himalaya, people live in widely spread settlements and suffer more from landslides than from any other type of natural disaster. The intense summer monsoons are the main factor in triggering landslides. However, the relations between landslides and slope hydrology have not been a focal topic in Himalayan landslide research. This paper deals with the contributing parameters for the rainfall-triggered landslides which occurred during an extreme monsoon rainfall event on 23 July 2002, in the south-western hills of Kathmandu valley, in the Lesser Himalaya, Nepal. Parameters such as bedrock geology, geomorphology, geotechnical properties of soil, and clay mineralogy are described in this paper. Landslide modeling was performed in SEEP/W and SLOPE/W to understand the relationship of pore water pressure variations in soil layers and to determine the spatial variation of landslide occurrence. Soil characteristics, low angle of internal friction of fines in soil, medium range of soil permeability, presence of clay minerals in soil, bedrock hydrogeology, and human intervention were found to be the main contributing parameters for slope failures in the region.  相似文献   
6.
CRUSTAL CONFIGURATION OF NW HIMALAYA: EVIDENCES FROM THE ISOSTATIC AND FLEXURAL ANALYSIS OF GRAVITY DATA  相似文献   
7.
在特提斯喜马拉雅带东部江孜-康马一带发育大量近东西向展布的辉绿岩体/墙,研究表明这些基性岩至少可分为三期:(1)形成于~140Ma的辉绿岩具有OIB型地球化学特征,部分样品Sr-Nd同位素组成与其东部~132Ma错美-班布里大火成岩省中基性岩相当,部分高镁样品具有Nb-Ta负异常和Pb正异常,εNd(t)值小于0;(2)形成于~120Ma的辉绿岩显示N-MORB型地球化学特征;(3)形成于~90Ma的辉绿岩显示E-MORB型地球化学特征。后两期基性岩的Sr-Nd同位素组成均显示与印度洋MORB相关。结合同时期的Kerguelen地幔柱活动轨迹及东冈瓦纳大陆裂解事件,本文认为江孜-康马地区~140Ma基性岩代表Kerguelen地幔柱及其与上覆东冈瓦纳大陆岩石圈地幔相互作用产物,是Kerguelen地幔柱长期潜伏于东冈瓦纳大陆下的证据,在前人研究基础上将该地幔柱影响的范围从错美向西拓展了约200km;之后随着东冈瓦纳大陆裂解和印度洋的开启及扩张,印度板块逐渐北移并远离Kerguelen地幔柱,江孜-康马地区~120Ma和~90Ma两期基性岩代表新生印度洋软流圈部分熔融的产物,与Kerguelen地幔柱无关。该区识别出的三期基性岩浆活动表明:特提斯喜马拉雅带的东部在白垩纪经历了与东冈瓦纳大陆裂解、印度洋的开启和扩张相关的多期基性岩浆活动。这些基性岩为深入了解和限定特提斯喜马拉雅带自140Ma以来的古地理位置和构造演化过程提供了新的岩石记录和时间坐标。  相似文献   
8.
Introduction The Himalaya is considered to be the youngest mountains on the earth, and is tectonically very active, and hence inherently (geologically) vulnerable to hazards. Extreme rainfall events, landslides, debris flows, torrents and flash floods due…  相似文献   
9.
The textural and chemical evolution of allanite and monazite along a well‐constrained prograde metamorphic suite in the High Himalayan Crystalline of Zanskar was investigated to determine the P–T conditions for the crystallization of these two REE accessory phases. The results of this study reveals that: (i) allanite is the stable REE accessory phase in the biotite and garnet zone and (ii) allanite disappears at the staurolite‐in isograd, simultaneously with the occurrence of the first metamorphic monazite. Both monazite and allanite occur as inclusions in staurolite, indicating that the breakdown of allanite and the formation of monazite proceeded during staurolite crystallization. Staurolite growth modelling indicates that staurolite crystallized between 580 and 610 °C, thus setting the lower temperature limit for the monazite‐forming reaction at ~600 °C. Preservation of allanite and monazite inclusions in garnet (core and rim) constrains the garnet molar composition when the first monazite was overgrown and subsequently encompassed by the garnet crystallization front. Garnet growth modelling and the intersection of isopleths reveal that the monazite closest to the garnet core was overgrown by the garnet advancing crystallization front at 590 °C, which establishes an upper temperature limit for monazite crystallization. Significantly, the substitution of allanite by monazite occurs in close spatial proximity, i.e. at similar P–T conditions, in all rock types investigated, from Al‐rich metapelites to more psammitic metasedimentary rocks. This indicates that major silicate phases, such as staurolite and garnet, do not play a significant role in the monazite‐forming reaction. Our data show that the occurrence of the first metamorphic monazite in these rocks was mainly determined by the P–T conditions, not by bulk chemical composition. In Barrovian terranes, dating prograde monazite in metapelites thus means constraining the time when these rocks reached the 600 °C isotherm.  相似文献   
10.
I-DtjcrONAlpine environment enjoys a distinct set of physicochemical conditions asl compared to other aqueous systems. Thehydrochemical characteristics of meltwater draining from thisenvironment are different from the other aqueous ecosystemsdue to their mountainous nature and extreme cold climatic conditions. The high concentration of various chemical constitu.ents in meltwater shows the intensive chemical weathering inthe basin. The rapid physical weathering due tO grinding actionof the gl…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号