首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   2篇
天文学   108篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2015年   3篇
  2014年   6篇
  2013年   1篇
  2012年   6篇
  2011年   8篇
  2010年   11篇
  2009年   6篇
  2008年   1篇
  2007年   8篇
  2006年   8篇
  2005年   4篇
  2004年   10篇
  2003年   7篇
  2002年   6篇
  2001年   8篇
  2000年   3篇
  1999年   3篇
  1997年   1篇
  1996年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
1.
SARG is a cross dispersed echelle spectrograph in operation since late spring 2000 at the Italian Telescopio Nazionale Galileo (TNG) 3.5 m telescope, La Palma. SARG offers both single object and long slit (up to 26 arcsec) observing modes covering a spectral range from λ = 0.37 up to1 μm, with resolution ranging from R = 29,000 up to R = 164,000. Cross dispersion is provided by means of a selection of four grisms; interference filters may be used for the long slit mode (up to 26 arcsec). A dioptric camera images the cross dispersed spectra onto a mosaic of two 2048 × 4096 EEV CCDs (pixel size: 13.5 μm) allowing complete spectral coverage at all resolving power for λ < 0.8 μm. In order to reach a high wavelength calibration precision an iodine-absorbing cell is provided. A Distributed Active Temperature Control System (DATCS) maintains constant the temperature of all spectrograph components at a preset value. Early results show that SARG works according to original specifications in terms of wavelength coverage, efficiency (measured peak efficiency is about 13%),resolution (maximum resolution R = 164,000 using a 0.3 arcsec slit, R ∼144,000 using an image slicer), and stability (preliminary estimates of radial velocity accuracy is ∼3 m/s using the iodine cell and ±150 m/s without the iodine cell). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
3.
We describe the integral field unit (IFU) which converts the Gemini Multiobject Spectrograph (GMOS) installed on the Gemini-North telescope to an integral field spectrograph,which produces spectra over a contiguous field of view of 7 × 5 arcsec with spatial sampling of 0.2 arcsecover the wavelength range 0.4-1.0 μm.GMOS is converted to this mode by the remote insertion of the IFU into thebeam in place of the masks used for the multiobject mode. A separate fieldof half the area of the main field, but otherwise identical, is alsoprovided to improve background subtraction. The IFU contains 1500lenslet-coupled fibres and was the first facility of any type for integralfield spectroscopy employed on an 8/10 m telescope.We describe the design, construction and testing of the GMOS IFU and present measurements of the throughput both in the laboratory and at the telescope. We compare these with a theoretical prediction made before construction started. All are in good agreement with each other, with the on-telescope throughput exceeding 60% (averaged over wavelength). Finallywe show an example of data obtained during commissioning to illustrate the power of the device.  相似文献   
4.
5.
In this paper, the present status of the development of the design of the European Solar Telescope is described. The telescope is devised to have the best possible angular resolution and polarimetric performance, maximizing the throughput of the whole system. To that aim, adaptive optics and multi‐conjugate adaptive optics are integrated in the optical path. The system will have the possibility to correct for the diurnal variation of the distance to the turbulence layers, by using several deformable mirrors, conjugated at different heights. The present optical design of the telescope distributes the optical elements along the optical path in such a way that the instrumental polarization induced by the telescope is minimized and independent of the solar elevation and azimuth. This property represents a large advantage for polarimetric measurements. The ensemble of instruments that are planned is also presented (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
6.
High‐fidelity spectroscopy presents challenges for both observations and in designing instruments. High‐resolution and high‐accuracy spectra are required for verifying hydrodynamic stellar atmospheres and for resolving intergalactic absorption‐line structures in quasars. Even with great photon fluxes from large telescopes with matching spectrometers, precise measurements of line profiles and wavelength positions encounter various physical, observational, and instrumental limits. The analysis may be limited by astrophysical and telluric blends, lack of suitable lines, imprecise laboratory wavelengths, or instrumental imperfections. To some extent, such limits can be pushed by forming averages over many similar spectral lines, thus averaging away small random blends and wavelength errors. In situations where theoretical predictions of lineshapes and shifts can be accurately made (e.g., hydrodynamic models of solar‐type stars), the consistency between noisy observations and theoretical predictions may be verified; however this is not feasible for, e.g., the complex of intergalactic metal lines in spectra of distant quasars, where the primary data must come from observations. To more fully resolve lineshapes and interpret wavelength shifts in stars and quasars alike, spectral resolutions on order R = 300 000 or more are required; a level that is becoming (but is not yet) available. A grand challenge remains to design efficient spectrometers with resolutions approaching R = 1 000 000 for the forthcoming generation of extremely large telescopes (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
7.
This document discusses the possibility of using compressed sensing techniques for measuring 2D spectro‐polarimetric information using only one etalon and a broad prefilter. Instead of using an etalon and an extremely narrow prefilter (with all the subsequent problems of alignment), the idea is to use multiplexing techniques to include in the observations all the secondary peaks of the etalon. The reconstruction of the signal is done under the assumption that it can be efficiently reproduced in an orthogonal basis set (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
8.
A perhaps surprising property of optical fibres is that they remain flexible at cryogenic temperatures. This implies that they may be used for multiple-object and integral field spectroscopy in the thermal infrared in cryogenic instrumentation. In this paper the results of performance tests of optical fibres (silica and zirconium fluoride) at cryogenic temperatures are presented. By mounting the fibres in glass tubes with the appropriate adhesive, it was found that only negligible focal ratio degradation occurs when the fibre is cooled to 77 K.  相似文献   
9.
The centre of NGC 4151 has been observed in the J band with the SMIRFS integral field unit (IFU) on the UK Infrared Telescope. A map of [Fe  ii ] emission is derived, and compared with the distributions of the optical narrow-line region and radio jet. We conclude that, because the [Fe  ii ] emission is associated more closely with the visible narrow-line region than with the radio jet, it arises mainly through photoionization of gas by collimated X-rays from the Seyfert nucleus. The velocity field and strength with respect to Pa β are found to be consistent with this argument. The performance of the IFU is considered briefly, and techniques for observation and data analysis are discussed.  相似文献   
10.
We consider long-slit emission-line spectra of galactic nuclei when the slit is wider than the instrumental point spread function, and the target has large velocity gradients. The finite width of the slit generates complex distributions of brightness at a given spatial point in the measured spectrum, which can be misinterpreted as coming from additional physically distinct nuclear components. We illustrate this phenomenon for the case of a thin disc in circular motion around a nuclear black hole (BH). We develop a new method for estimating the mass of the BH that exploits a feature in the spectrum at the outer edge of the BH's sphere of influence, and therefore gives higher sensitivity to BH detection than traditional methods. Moreover, with this method we can determine the BH mass and the inclination of the surrounding disc separately, whereas the traditional approach to BH estimation requires two long-slit spectra to be taken. We show that, with a given spectrograph, the detectability of a BH depends on the sense of rotation of the nuclear disc. We apply our method to estimate the BH mass in M84 from a publicly available spectrum, and recover a value four times lower than that published previously from the same data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号