首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   12篇
  国内免费   10篇
测绘学   1篇
地球物理   20篇
地质学   92篇
海洋学   3篇
天文学   4篇
综合类   3篇
自然地理   21篇
  2021年   1篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   12篇
  2015年   5篇
  2014年   1篇
  2013年   16篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   11篇
  2007年   9篇
  2006年   10篇
  2005年   2篇
  2004年   7篇
  2003年   7篇
  2002年   2篇
  2001年   4篇
  2000年   11篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有144条查询结果,搜索用时 31 毫秒
1.
The main objective of the research work isthe homogenisation of the two recentAlgerian earthquake catalogues for thecommon covered period of time, from 1900 to1990, for the region under considerationlimited by [33°N–38°N,4°E-9.5°E] and the updatingof the catalogue for the twentieth century(1900–2000). To mitigate the deficiencyof the incompleteness of catalogue, aneffort was made to establish a correlationbetween surface-wave magnitude Ms andbody-wave magnitude mb in the form ofMs = a + b (mb). A complete, exact andhomogeneous earthquake catalogue as much aspossible, comprising 870 seismic events,has been compiled. Seismicity analysis ofthe region shows a strong concentration ofseismicity along a band of no more than400 km width oriented mainly in theeast-west direction parallel to the coast.Moreover, earthquakes in this zone arerather associated to strike-slip mechanism.The focal mechanism show a regional stressregime that corresponds to horizontalcompression in NW-SE to N-S direction. As aresult of the review of the seismicity ofnorth-eastern Algeria from the compilationof checked and corrected data and itscorrelation with other geologic andgeophysical investigations based ondocumentary sources, it was possible toconstruct a most complete seismotectonicmap. It leads also to delineate fourseismogenic zones in the Tellian Atlas, aless important zone in the Saharan Atlas, asixth zone at the boundary of both Atlasand finally, a seventh one along thecoastal zone. The seismicity-active faultscorrelation of some of these defined zonesis examined in details with a specialattention to the Saharan Atlas zone, theHodna and Biban zone as well as Soummam andBabor zone where further research workallowed to find some neotectonic featuresconsidered as a significant sign of recenttectonic activity.  相似文献   
2.
The paper records evidences of neotectonic activities in the Gangotri glacier valley that are found to be responsible for the present-day geomorphic set-up of the area since the last phase of major glaciation. Geomorphological features indicate the presence of a large glacier in the valley in the geological past. Prominent planar structures present in the rocks were later on modified into sets of normal faults in the present-day Himalayan tectonic set-up giving rise to graben structures. The block nearest the snout is traversed by the NW-SE trending Gaumukh fault. A number of terraces mark the entrenchment of Bhagirathi River in this part. The contrasting drainage morphometric parameters of two sides of the valley and asymmetric recessional patterns of the tributary glaciers further document movement along the fault. The distribution and orientation of debris fans also seem to be controlled by neotectonic activity. The neotectonic activity that followed the process of deglaciation has brought the glacially carved, wide U- shaped valley in contact with the present-day fluvially incised narrow and relatively deep valley. The wider segments have become sites of active deposition of glacially eroded debris. The low gradient and excessive filling has resulted in the river attaining a braided nature in these segments.  相似文献   
3.
4.
Lineament analysis is applied to map the pattern of the Obruchev fault system in the Buguldeika Village area, where several fault zones (Olkhon, Primorsky, Prikhrebtovyi, Buguldeika, and Kurtun) make up a junction. As inferred from the predominant directions of genetically related lineaments, the Olkhon, Primorsky, and Prikhrebtovyi faults originated under NW-SE extension and compression. The extension and compression settings within these zones are reconstructed by analysis of lineaments that have prominent and poor geomorphic expression, respectively. However, the pattern of lineaments well expressed in the surface topography within a weakly deformed block corresponds to reverse slip, while that of poorly pronounced lineaments corresponds to left-lateral strike slip. The study confirms the idea that the latest extension (rifting) stage in the Baikal region reactivated fault zones but did not deform blocks. The blocks store record of residual deformation produced by previous settings of regional compression and shear. The obtained results agree with earlier tectonophysical analysis of faults and fractures in the area and prove the applicability of the suggested approach to map the fault patterns and reconstruct their respective stress settings in areas that underwent multiple deformation events of different ages.  相似文献   
5.
This paper presents the first glacial chronology for the Lahul Himalaya, Northern India. The oldest glaciation, the Chandra Glacial Stage, is represented by glacially eroded benches at altitudes greater than 4300 m above sea-level. This glaciation was probably of a broad valley type. The second glaciation, the Batal Glacial Stage, is represented by highly weathered and dissected lateral moraines, which are present along the Chandra valley and some of its tributaries. This was an extensive valley glaciation. The third major glaciation, the Kulti Glacial Stage, is represented by well-preserved moraines in the main tributary valleys of the Chandra valley. This represents a less extensive valley glaciation. Two minor glacial advances, the Sonapani I and II, are represented by small sharp-crested moraines, which are within a few hundred metres or few kilometres of the present-day glaciers. The change in style and extent of glaciation is attributed to an increase in aridity throughout the Quaternary, due either to global climatic change or uplift of the Pir Panjal mountains to the south of Lahul, which restricted the northward penetration of the south Asian summer monsoon. © 1996 John Wiley & Sons, Ltd.  相似文献   
6.
南海东北部新构造运动及其动力学机制   总被引:1,自引:0,他引:1  
南海东北部地处欧亚板块与菲律宾海板块的交汇区,新构造运动活跃。根据地震活动性、震源机制解和GPS资料对该区的新构造活动特征进行分析,在此基础上讨论该区新构造运动的动力学机制。分析发现,菲律宾海板块NW向俯冲对该区的影响最为显著,导致了该区较强的地震活动性以及与俯冲方向一致的构造应力场。而印藏碰撞产生的侧向应力传递也影响到该区,控制华南地块向SE方向运动,并与菲律宾海板块的NW向俯冲共同作用,使华南地块在SE向运动的同时伴有逆时针旋转。印藏碰撞的SE向应力传递对俯冲产生的NW向水平挤压的抵消作用,使得地震活动性自东向西减弱以及构造应力场P轴方位角顺时针旋转。在这一背景下,区内滨海断裂带的活动控制了该区的地震、海岸带构造升降等新构造运动。  相似文献   
7.
A linear regression analysis of 28 selected tide-gauge stations of the Zhujiang Estuary shows that there has been a tendency of local sea level rise at a rate of 2.028 mm per year. The origin of the variation is significantly attributed to the local tectonic movement of discrepant fault-block. Based on this, four types of relative local sea level changes are classified. According to calculation, half of the fertile land, or 800 km2 of the delta plain will have been submerged by sea water by about 2040. This will yield a significant influence on the economic construction and human activities.  相似文献   
8.
The Chaohu-Tongling area in Anhui Province is a typical moderate-to-strong earthquake active area in the mainland of China. Four earthquakes occurred in this area, displayed as a NNE-trending zonal distribution, including the 1585 M5(3/4) Chaoxian earthquake and the 1654 M5(1/4) Lujiang earthquake, which formed a striking moderate-to-strong seismic activity zone. Field survey, shallow geophysical prospecting, drilling data, collection and dating of chronology samples and comprehensive analysis of fault activity indicate that the Fanshan, Xiajialing and Langcun faults are not active since Quaternary. The NNE-trending Tongling Fault is a buried middle-Pleistocene fault, but it can produce moderate-to-strong earthquakes and control the evolution and development of three en echelon geologic structures. The intensity of the four earthquakes is characterized by southward progressive decrease, which is in accordance with the characteristics that the subsidence range of Wuwei Basin is obviously larger than that of Guichi Basin to its south since late Cenozoic. In terms of deep structure, the characteristics of spatial distribution of Tongling Fault indicate that it corresponds to a NNE-striking Bouguer gravity anomaly gradient belt. So there is a spatial correspondence between the middle-Pleistocene Tongling Fault, the en echelon structures, the differential movement of the neotectonics, the Bouguer gravity anomaly gradient belt and the moderate-to-strong seismic activity belt in the Chaohu-Tongling area, indicating that they should be the tectonic indications of occurrence for moderate-to-strong earthquakes.  相似文献   
9.
The 160 km long Sudetic Marginal Fault (SMF) of Middle Silesia, southwestern Poland, is a main Alpine fault oriented NW–SE. This paper provides evidence of possible neotectonic activity in front of the SMF. The data are based on three exposures in the Roztoka–Mokrzeszow Graben near the city of Swidnica. Morphotectonic evidence in front of the SMF is also examined. Two sets of extensional deformation features are exposed and analysed. The main one includes gently inclined normal faults and flexures, with displacements in the bedrock of at least several metres. Based on the Quaternary stratigraphy of the region, the age of deformation is most probably Lower Saalian (Upper Pleistocene). The trigger for the deformation was probably the re-reactivation of the SMF and other faults due to the advance of the Lower Saalian Scandinavian ice-sheet into the Sudetic Mountains. The secondary deformation system includes sub-vertical, often conjugate faults with displacements up to 0·5 m superimposed on former structures. Its dominant normal faulting mode suggests an extensional stress regime that apparently coincides with the post-glacial glacioisostatic rebound. © 1997 John Wiley & Sons, Ltd.  相似文献   
10.
Assessing seismic hazard in continental interiors is difficult because these regions are characterized by low strain rates and may be struck by infrequent destructive earthquakes. In this paper, we provide an example showing that interpretations of seismic cross sections combined with other kinds of studies such as analysis of microseismicity allow the whole seismogenic source area to be imaged in this type of region. The Middle Durance Fault (MDF) is an 80-km-long fault system located southeastern France that has a moderate but regular seismicity and some palaeoseismic evidence for larger events. It behaves as an oblique ramp with a left-lateral-reverse fault slip and has a low strain rate. MDF is one of the rare slow active fault system monitored by a dedicated dense velocimetric short period network. This study showed a fault system segmented in map and cross section views which consists of staircase basement faults topped by listric faults ramping off Triassic evaporitic beds. Seismic sections allowed the construction of a 3-D structural model used for accurate location of microseismicity. Southern part of MDF is mainly active in the sedimentary cover. In its northern part and in Alpine foreland, seismicity deeper than 8 km was also recorded meaning active faults within the crust cannot be excluded. Seismogenic potential of MDF was roughly assessed. Resulting source sizes and estimated slip rates imply that the magnitude upper limit ranges from 6.0 to 6.5 with a return period of a few thousand years. The present study shows that the coupling between 3-D fault geometry imaging and accurate location of microseismicity provides a robust approach to analyse active fault sources and consequently a more refined seismic hazard assessment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号