首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
地球物理   1篇
天文学   16篇
  2021年   1篇
  2008年   1篇
  2005年   1篇
  2004年   10篇
  2003年   1篇
  2000年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有17条查询结果,搜索用时 11 毫秒
1.
The orbits of (69230) Hermes and 2002 SY50 are similar and the Earth approaches both of them twice: at the end of October the local orbital minimum distances are smaller than 0.007 AU, and at the end of April the distances are smaller than 0.04 AU. This gives us opportunities to observe the meteors associated with these asteroids. Using the geocentric parameters of the orbital close encounters (the theoretical radiants) and our D N distance function (Valsecchi et al. Mon. Not. R. Astron. Soc. 304 (1999) 743), we searched for meteoroids originated by Hermes and 2002 SY50. A search among 1830 good quality photographic meteors gave negative results: we found no meteor dynamically similar to Hermes or 2002 SY50. In a second search, done in a set of 62150 radio meteors, we applied two methods (M1, M2) and in both cases we found two streams; the streams found with the M1 method had 43 and 30 members, those found with the M2 method had 39 and 14 members. However, these results do not look convincing, due to the small number of common members in the corresponding streams. We therefore conclude that amongst the IAU meteors used in our search there are no compact streams associated with Hermes and 2002 SY50.  相似文献   
2.
We examine the potential contamination of cometary nuclei through impacts from asteroidal origin meteoroids. The paper uses a simple model and has the goal of determining whether asteroidal contamination is potentially significant. We assume a meteoroid power law mass distribution with index values in the range from s=1.83 to s=2.09. We used maximum and minimum models which we believe will bracket the true meteoroid mass distribution. We identify those comets which are expected to be most significantly contaminated, and find values of up to 3.6 kg of asteroidal meteoroid impact per square meter of the cometary surface per orbital revolution. This is less than the expected mass loss per perihelion passage for most comets. Therefore any remnant effects of the contamination will depend on the penetration depth of the meteoroids in the cometary nucleus, and possibly on the distribution of active and inactive areas on cometary nuclei. We present a simple model which suggests that even small meteoroids will embed relatively deeply into a cometary nucleus.  相似文献   
3.
Over the last decade several new models for the sporadic interplanetary meteoroid flux have been developed. These include the Divine-Staubach and the Dikarev model. They typically cover mass ranges from 10−18 g to 1 g and are applicable for model specific Sun distance ranges between 0.1 AU and 20 AU Near 1 AU averaged fluxes (over direction and velocities) for all these models are tuned to the well established interplanetary model by Grün et al. However, in many respects these models differ considerably. Examples are the velocity and directional distributions and the assumed meteoroid sources. In this paper flux predictions by the various models to Earth orbiting spacecraft are compared. Main differences are presented and analysed. The persisting differences even for near Earth space can be seen as surprising in view of the numerous ground based (optical and radar) and in situ (captured Inter Stellar Dust Particles, in situ detectors and analysis of retrieved hardware) measurements and simulations.  相似文献   
4.
Various points are discussed concerning the association of Earth-crossing asteroids (ECAs) with meteoroid streams, including the drawbacks of the techniques used in some previous work. In comparing the theoretical radiants of any ECA (or, indeed, comet) with observed meteor radiants it is necessary that the orbit used be that appropriate for epochs when the ECA has a node at 1 AU; in each precession cycle of the argument of perihelion () there will be four values rendering a node at the Earth's orbit, so that four showers are expected. Precession of the node will result in sets of showers at different times of year from different-precession cycles, whilst for some objects the orbital evolution is more convoluted. For diffuse, low-flux showers a problem is differentiating the meteors associated with any ECA from the sporadic background; a new graphical technique is introduced for illuminating whether such associations exist. A re-evaluation is required of whether ECAs should be thought of as being parent bodies of specific showers. Although this might be the case for some very large ECAs (such as (3200) Phaethon, associated with the Geminid stream), the bodies observed now being extinct or dormant cometary cores, it is suggested that in general the ECAs are better thought of as being large fragments produced in hierarchical cometary disintegrations. That is, some ECAs are just the largest meteoroids in meteoroid streams.  相似文献   
5.
彗星的喷发速度在流星群的演化过程中起着重要作用。本文简述了 (1 )流星群轨道升交点的变化和周期的变化都与喷发速度密切相关 ,(2 )从流星雨的观测结果可推断出喷发速度 ,(3)喷发速度的理论模型和结果。  相似文献   
6.
Measurements of meteoroid velocities and decelerations have been obtained from post-t 0 diffraction patterns present in echo signatures obtained from the multi-site AMOR radar operated at the University of Canterbury’s research facility. The system allows the sampling of a meteoroid’s velocity at separated points along the body’s trajectory to yield decelerations. The technique has potential value in providing data on the relation between trajectory behaviour, drag characteristics, the physical structure of meteoroids and stream membership or orbit type.  相似文献   
7.
A detailed analysis of a photographic spectrum of a Geminid fireball obtained in December 14, 1961 at the Ondrejov Observatory is presented. We have computed a synthetic spectrum for the fireball and compared it with the observed spectrum assuming chemical equilibrium in the meteor head. In this way we have determined relative chemical abundances in meteor vapors. Comparing the relative chemical abundances of this Geminid meteoroid with those obtained from meteoroids associated with comets 55P/Tempel-Tuttle and 109P/Swift-Tuttle we found no significant chemical differences in main rock-forming elements. Despite of this similarity, the deepest penetration of the Geminid meteoroids and their ability to reach high rotation rates in space without fragmentation suggest that thermal processing is affecting their physical properties. We suggest that as consequence of space weathering a high-strength envelope is produced around these particles. In this picture, heating processes of the mineral phases could result in the peculiar properties observed during atmospheric entry of the Geminid meteoroids, especially their strength, which is evidenced by its resistance to ablation. Finally, although one meteoroid cannot be obviously considered as representative of the composition of its parent body, we conclude that 3200 Phaethon is able to produce millimetre-size debris nearly chondritic in composition, but the measured slight overabundance of Na would support a cometary origin for this body.  相似文献   
8.
The values of the initial velocity of the meteoroids ejected from the parent bodies are small and as a result, the most of the young meteoroid streams have similar orbits to their parent bodies. Assuming that the members of the observed meteor stream evolved under the influence of gravitational perturbations mostly, Pittich [1991, Proceedings of the Conference on Dynamic of Small Bodies of the Solar System, Polish-Slovak Conference, Warsaw, October 25–28, 1988, pp. 55-61], Williams [1996, Earth, Moon, Planets 72, 321–326; 2001, Proceedings of the Meteoroids 2001 conference, Kiruna, Sweden, August 6–10, 2001, pp. 33–42] estimated the ejection velocities of the stream meteoroids. Equation relating the ejection velocity Δυ and the change Δa of the semi-major axis, Williams (2001), was applied with two slightly different variations. In the first one (M1) as Δa the difference between the mean orbit of the stream and the orbit of the parent body was substituted, in the second one (M2), as Δa the dispersion of semi-major axes around the mean orbit of the stream was used. The results obtained by these two methods are not free from discrepancies, partly explained by the particular orbital structure of the stream. Kresak [1992, Contrib. Astron. Obs. Skalnate Pleso 22, 123–130] strongly criticized the attempts to determine the initial velocities of the stream using the statistics of the meteor orbits. He argued that this is essentially impossible, because the dispersion of the initial velocities are masked by much larger measuring errors and by the accumulated effects of planetary perturbations. In our paper, we study the reliability of M1 and M2 methods. We made a numerical experiment consisting of formation of several meteor streams and their dynamical evolution over 5000 years. We ejected meteoroids particles from the comets: 1P/Halley, 2P/Encke, 55P/Tempel-Tuttle, 109P/Swift-Tuttle and from minor planets (3200) Phaethon and 2002 SY50. During the integration, the ejection velocities were estimated using both M1 and M2 methods. The results show that the velocities obtained by M1 method are unstable: too high or too low, when compared with the known ejection velocities at the time of the stream formation. On the other hand, the velocities obtained using M2 method are too small, mostly. In principle, M2 estimates the dispersion of the distribution of the ejection velocities around the mean value, not the mean value itself. Applying more accurate Equation relating Δυ and Δa we decreased the bias of the results, but not their variation observed during the evolution of the streams and the parent bodies. We have found that the variability of the estimated ejection velocities was caused mainly by the gravitational changes of the semi-major axis and eccentricity of the parent body. In brief, we have found that the reliability of the results obtained by M1 or M2 method are low, and have to be used with great care.  相似文献   
9.
The Canadian Meteor Orbit Radar (CMOR) is used to look at the distribution of meteoroids which encounter the Earth. As a single-station operation, it is capable of determining radiant distributions on a statistical basis and the position and speed of individual meteors. The addition of two outlying receiving stations allows the determination of the orientation in space of the meteor leading to an estimate of the orbital parameters of the individual meteor and an independent additional estimate of its speed. Comparison is made of the effectiveness of the two modes of operation using observations on the Geminid and Sextantid meteor streams.  相似文献   
10.
The velocity distribution of meteoroids at the Earth is measured using a time-of-flight measurement technique applied to data collected by the CMOR radar (29.85 MHz). Comparison to earlier velocity measurements from the Harvard Radio Meteor Project suggests that HRMP suffered from biases which underestimated the number of fragmenting meteoroids. This bias results in a systematic underestimation of the numbers of higher velocity meteoroids. Other works (cf. Taylor and Elford, 1998) have also found additional biases in the HRMP which suggest the original HRMP meteoroid velocity analysis may have underestimated the fraction of high velocity meteors by factors up to 104.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号