首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   683篇
  免费   43篇
  国内免费   38篇
测绘学   18篇
大气科学   29篇
地球物理   129篇
地质学   139篇
海洋学   44篇
天文学   290篇
综合类   27篇
自然地理   88篇
  2024年   2篇
  2023年   2篇
  2022年   11篇
  2021年   8篇
  2020年   13篇
  2019年   10篇
  2018年   11篇
  2017年   13篇
  2016年   16篇
  2015年   10篇
  2014年   20篇
  2013年   21篇
  2012年   17篇
  2011年   16篇
  2010年   22篇
  2009年   42篇
  2008年   76篇
  2007年   62篇
  2006年   62篇
  2005年   47篇
  2004年   48篇
  2003年   44篇
  2002年   31篇
  2001年   25篇
  2000年   10篇
  1999年   15篇
  1998年   12篇
  1997年   11篇
  1996年   14篇
  1995年   7篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   9篇
  1990年   16篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1984年   1篇
  1983年   3篇
  1981年   2篇
  1978年   2篇
  1977年   2篇
排序方式: 共有764条查询结果,搜索用时 15 毫秒
1.
2.
3.
In many areas of engineering practice, applied loads are not uniformly distributed but often concentrated towards the centre of a foundation. Thus, loads are more realistically depicted as distributed as linearly varying or as parabola of revolution. Solutions for stresses in a transversely isotropic half‐space caused by concave and convex parabolic loads that act on a rectangle have not been derived. This work proposes analytical solutions for stresses in a transversely isotropic half‐space, induced by three‐dimensional, buried, linearly varying/uniform/parabolic rectangular loads. Load types include an upwardly and a downwardly linearly varying load, a uniform load, a concave and a convex parabolic load, all distributed over a rectangular area. These solutions are obtained by integrating the point load solutions in a Cartesian co‐ordinate system for a transversely isotropic half‐space. The buried depth, the dimensions of the loaded area, the type and degree of material anisotropy and the loading type for transversely isotropic half‐spaces influence the proposed solutions. An illustrative example is presented to elucidate the effect of the dimensions of the loaded area, the type and degree of rock anisotropy, and the type of loading on the vertical stress in the isotropic/transversely isotropic rocks subjected to a linearly varying/uniform/parabolic rectangular load. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
4.
The periodic solutions of the restricted three-body problem representing analytic continuations of Keplerian rectilinear periodic motions are well known (Kurcheeva, 1973). Here the stability of these solutions are examined by applying Poncaré's characteristic equation for periodic solutions. It is found that the isoperiodic solutions are stable and all other solutions are unstable.  相似文献   
5.
Constraints on an exact quintessence scalar-field model with an exponential potential are derived from gravitational lens statistics. An exponential potential can account for data from both optical quasar surveys and radio-selected sources. Based on the Cosmic Lens All-Sky Survey (CLASS) sample, lensing statistics provides, for the pressureless matter density parameter, an estimate of  ΩM0= 0.31+0.12−0.14  .  相似文献   
6.
7.
8.
We present precise measurements of the X-ray gas mass fraction for a sample of luminous, relatively relaxed clusters of galaxies observed with the Chandra observatory, for which independent confirmation of the mass results is available from gravitational lensing studies. Parametrizing the total (luminous plus dark matter) mass profiles using the model of Navarro, Frenk & White, we show that the X-ray gas mass fractions in the clusters asymptote towards an approximately constant value at a radius r 2500, where the mean interior density is 2500 times the critical density of the Universe at the redshifts of the clusters. Combining the Chandra results on the X-ray gas mass fraction and its apparent redshift dependence with recent measurements of the mean baryonic matter density in the Universe and the Hubble constant determined from the Hubble Key Project, we obtain a tight constraint on the mean total matter density of the Universe,     , and measure a positive cosmological constant,     . Our results are in good agreement with recent, independent findings based on analyses of anisotropies in the cosmic microwave background radiation, the properties of distant supernovae, and the large-scale distribution of galaxies.  相似文献   
9.
Dark energy has a dramatic effect on the dynamics of the Universe, causing the recently discovered acceleration of the expansion. The dynamics are also central to the behaviour of the growth of large-scale structure, offering the possibility that observations of structure formation provide a sensitive probe of the cosmology and dark energy characteristics. In particular, dark energy with a time-varying equation of state can have an influence on structure formation stretching back well into the matter-dominated epoch. We analyse this impact, first calculating the linear perturbation results, including those for weak gravitational lensing. These dynamical models possess definite observable differences from constant equation of state models. Then we present a large-scale numerical simulation of structure formation, including the largest volume to date involving a time-varying equation of state. We find the halo mass function is well described by the Jenkins et al. mass function formula. We also show how to interpret modifications of the Friedmann equation in terms of a time-variable equation of state. The results presented here provide steps toward realistic computation of the effect of dark energy in cosmological probes involving large-scale structure, such as cluster counts, the Sunyaev–Zel'dovich effect or weak gravitational lensing.  相似文献   
10.
This paper gives the results of a programme attempting to exploit ‘la seule bréche’ (Poincaré, 1892, p. 82) of non-integrable systems, namely to develop an approximate general solution for the three out of its four component-solutions of the planar restricted three-body problem. This is accomplished by computing a large number of families of ‘solutions précieuses’ (periodic solutions) covering densely the space of initial conditions of this problem. More specifically, we calculated numerically and only for μ = 0.4, all families of symmetric periodic solutions (1st component of the general solution) existing in the domain D:(x 0 ∊ [−2,2],C ∊ [−2,5]) of the (x 0, C) space and consisting of symmetric solutions re-entering after 1 up to 50 revolutions (see graph in Fig. 4). Then we tested the parts of the domain D that is void of such families and established that they belong to the category of escape motions (2nd component of the general solution). The approximation of the 3rd component (asymmetric solutions) we shall present in a future publication. The 4th component of the general solution of the problem, namely the one consisting of the bounded non-periodic solutions, is considered as approximated by those of the 1st or the 2nd component on account of the `Last Geometric Theorem of Poincaré' (Birkhoff, 1913). The results obtained provoked interest to repeat the same work inside the larger closed domain D:(x 0 ∊ [−6,2], C ∊ [−5,5]) and the results are presented in Fig. 15. A test run of the programme developed led to reproduction of the results presented by Hénon (1965) with better accuracy and many additional families not included in the sited paper. Pointer directions construed from the main body of results led to the definition of useful concepts of the basic family of order n, n = 1, 2,… and the completeness criterion of the solution inside a compact sub-domain of the (x 0, C) space. The same results inspired the ‘partition theorem’, which conjectures the possibility of partitioning an initial conditions domain D into a finite set of sub-domains D i that fulfill the completeness criterion and allow complete approximation of the general solution of this problem by computing a relatively small number of family curves. The numerical results of this project include a large number of families that were computed in detail covering their natural termination, the morphology, and stability of their member solutions. Zooming into sub-domains of D permitted clear presentation of the families of symmetric solutions contained in them. Such zooming was made for various values of the parameter N, which defines the re-entrance revolutions number, which was selected to be from 50 to 500. The areas generating escape solutions have being investigated. In Appendix A we present families of symmetric solutions terminating at asymptotic solutions, and in Appendix B the morphology of large period symmetric solutions though examples of orbits that re-enter after from 8 to 500 revolutions. The paper concludes that approximations of the general solution of the planar restricted problem is possible and presents such approximations, only for some sub-domains that fulfill the completeness criterion, on the basis of sufficiently large number of families.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号