首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26393篇
  免费   1895篇
  国内免费   2964篇
测绘学   1130篇
大气科学   2123篇
地球物理   1859篇
地质学   5681篇
海洋学   1787篇
天文学   16937篇
综合类   511篇
自然地理   1224篇
  2024年   70篇
  2023年   170篇
  2022年   379篇
  2021年   314篇
  2020年   374篇
  2019年   552篇
  2018年   350篇
  2017年   332篇
  2016年   396篇
  2015年   516篇
  2014年   658篇
  2013年   612篇
  2012年   680篇
  2011年   775篇
  2010年   722篇
  2009年   2094篇
  2008年   2039篇
  2007年   2427篇
  2006年   2393篇
  2005年   2063篇
  2004年   2196篇
  2003年   1885篇
  2002年   1617篇
  2001年   1406篇
  2000年   1174篇
  1999年   1112篇
  1998年   1274篇
  1997年   394篇
  1996年   261篇
  1995年   390篇
  1994年   403篇
  1993年   199篇
  1992年   137篇
  1991年   135篇
  1990年   113篇
  1989年   152篇
  1988年   103篇
  1987年   99篇
  1986年   85篇
  1985年   50篇
  1984年   33篇
  1983年   30篇
  1982年   6篇
  1981年   7篇
  1980年   6篇
  1978年   7篇
  1977年   10篇
  1976年   10篇
  1973年   6篇
  1897年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Flow through rough fractures is investigated numerically in order to assess the validity of the local cubic law for different fracture geometries. Two‐dimensional channels with sinusoidal walls having different geometrical properties defined by the aperture, the amplitude, and the wavelength of the walls' corrugations, the corrugations asymmetry, and the phase shift between the two walls are considered to represent different fracture geometries. First, it is analytically shown that the hydraulic aperture clearly deviates from the mean aperture when the walls' roughness, the phase shift, and/or the asymmetry between the fracture walls are relatively high. The continuity and the Navier–Stokes equations are then solved by means of the finite element method and the numerical solutions compared to the theoretical predictions of the local cubic law. Reynolds numbers ranging from 0.066 to 66.66 are investigated so as to focus more particularly on the effect of flow inertial effects on the validity of the local cubic law. For low Reynolds number, typically less than 15, the local cubic law properly describes the fracture flow, especially when the fracture walls have small corrugation amplitudes. For Reynolds numbers higher than 15, the local cubic law is valid under the conditions that the fracture presents a low aspect ratio, small corrugation amplitudes, and a moderate phase lag between its walls.  相似文献   
3.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
4.
5.
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号