首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1693篇
  免费   30篇
  国内免费   48篇
测绘学   4篇
大气科学   9篇
地球物理   52篇
地质学   156篇
海洋学   47篇
天文学   1479篇
综合类   7篇
自然地理   17篇
  2024年   5篇
  2023年   6篇
  2022年   9篇
  2021年   11篇
  2020年   3篇
  2019年   15篇
  2018年   7篇
  2017年   8篇
  2016年   8篇
  2015年   19篇
  2014年   16篇
  2013年   25篇
  2012年   29篇
  2011年   28篇
  2010年   24篇
  2009年   136篇
  2008年   103篇
  2007年   161篇
  2006年   141篇
  2005年   131篇
  2004年   125篇
  2003年   136篇
  2002年   117篇
  2001年   104篇
  2000年   93篇
  1999年   103篇
  1998年   112篇
  1997年   15篇
  1996年   13篇
  1995年   13篇
  1994年   7篇
  1993年   11篇
  1992年   5篇
  1991年   2篇
  1990年   6篇
  1989年   7篇
  1988年   4篇
  1987年   5篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   5篇
排序方式: 共有1771条查询结果,搜索用时 15 毫秒
1.
2.
3.
The magnetic-field distribution outside a flat, infinitely conductive unbounded disk in the field of a point magnetic dipole is determined. A relationship is established between the problem of magnetic-field determination and the problem of the flow of an ideal incompressible fluid around an infinitely thin disk.  相似文献   
4.
5.
6.
7.
8.
9.
10.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号