首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   3篇
地球物理   1篇
地质学   3篇
天文学   8篇
  2019年   1篇
  2011年   1篇
  2008年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Twenty-two peat samples collected at different depths of a core including the layer affected by the 1908 explosion in Tunguska area of Central Siberia, Russia, and three basalt samples collected near the site, are analyzed by ICP-MS. The concentrations of Pd, Ni, Co, ΣREE, Ti and Sr in the event layers are 4–35 times higher than the background values in the normal layers. The variation of Pd is closely related to Ni, Co and ΣREE in the event layers, but not to these elements in the normal layers. It indicates that these excess elements came from the same source, i.e. the Tunguska explosion body. In addition, the patterns of Cl-chondrite-normalized REE in the event layers ((La/Yb)N ≈2–3) are much flatter than those in the normal layers ((La/Yb)N ≈7–143), and differ from those in the three basalt samples. The concentrations of REE in the three basalt samples are tens times higher than those in the event layers. It may be inferred that these excess elements could not be produced by the contamination of the terrestrial material, but probably by the Tunguska explosion body. Additionally, the ratios of Ti/Ni and Sr/Co in the event layers are close to those in comet. It implies that the solid part of the explosion body was compositionally similar to carbonaceous chondrites (Cl) and more probably a small comet. In terms of the Pd excess fluxes in the explosion area, it can be estimated that the celestial body that exploded over Tunguska in 1908 weighed more than 107 tons, corresponding to a radius of > 126 m.  相似文献   
2.
We have developed a new approach to modeling the acoustic-gravity wave (AGW) radiation from bolide sources. This first effort involves entry modeling of bolide sources that have available satellite data through procedures developed in ReVelle (Earth Moon Planets 95, 441–476, 2004a; in: A. Milani, G. Valsecchi, D. Vokrouhlicky (eds) NEO Fireball Diversity: Energetics-based Entry Modeling and Analysis Techniques, Near-earth Objects: Our Celestial Neighbors (IAU S236), 2007b). Results from the entry modeling are directly coupled to AGW production through line source blast wave theory for the initial wave amplitude and period at (at 10 blast wave radii and perpendicular to the trajectory). The second effort involves the prediction of the formation and or dominance of the propagation of the atmospheric Lamb, edge-wave composite mode in a viscous fluid (Pierce, J. Acoust. Soc. Amer. 35, 1798–1807, 1963) as a function of the source energy, horizontal range and source altitude using the Lamb wave frequency that was deduced directly during the entry modeling and that is used as a surrogate for the source energy. We have also determined that Lamb wave production by bolides at close range decreases dramatically as either the source energy decreases or the source altitude increases. Finally using procedures in Gill (Atmospheric-Ocean Dynamics, 1982) and in Tolstoy (Wave Propagation, 1973), we have analyzed two simple dispersion relationships and have calculated the expected dispersion for the Lamb edge-wave mode and for the excited, propagating internal acoustic waves. Finally, we have used the above formalism to fully evaluate these techniques for four large bolides, namely: the Tunguska bolide of June 30, 1908; the Revelstoke bolide of March 31, 1965; the Crete bolide of June 6, 2002 and the Antarctic bolide of September 3, 2004. Due to page limitations, we will only present results in detail for the Revelstoke bolide.  相似文献   
3.
Isotopic-geochemical investigations were carried out on peat samples from the 1908 Tunguska Cosmic Body (TCB) explosion area. We analyzed two peat columns from the Northern peat bog, sampled in 1998, and from the Raketka peat bog, sampled during the 1999 Italian expedition, both located near the epicenter of the TCB explosion area. At the depth of the “catastrophic” layer, formed in 1908, and deeper, one can observe shifts in the isotopic composition of nitrogen (up to Δ15N = +7.2‰) and carbon (up to Δ13C = +2‰) and also an increase in the nitrogen concentration compared to those in the normal, upper layers, unaffected by the Tunguska event. One possible explanation for these effects could be the presence of nitrogen and carbon from TCB material and from acid rains, following the TCB explosion, in the “catastrophic” and “precatastrophic” layers of peat. We found that the highest quantity of isotopically heavy nitrogen fell near the explosion epicenter and along the TCB trajectory. It is calculated that 200,000 tons of nitrogen fell over the area of devastated forest, i.e., only about 30% of the value calculated by Rasmussen et al. (1984). This discrepancy is probably caused by part of the nitrogen having dispersed in the Earth’s atmosphere. The isotopic effects observed in the peat agree with the results of previous investigations [Kolesnikov et al 1998a], [Kolesnikov et al 1998b], [Kolesnikov et al 1999] and [Rasmussen et al 1999] and also with the increased content of iridium and other platinoids found in the corresponding peat layers of other columns [Hou et al 1998] and [Hou et al 2000]. These data favor the hypothesis of a cosmochemical origin of the isotopic effects.  相似文献   
4.
侯泉林  马配学 《地质论评》1997,43(2):131-138
本文用中子活化分析方法(NAA)分析了俄罗斯通古斯(Tunguska)地区1908年爆炸事件影响层中的元素地球化学特征,发现Ir,REE,Ni,Fe,Co等元素在事件层附近明显异常,异常因子达2-5。在事件主要影响层中Ir和Ni呈明显相关性,REE的碳质球粒陨石标准化配分曲线比较平坦,且比率在Ⅰ左右。因此,说明这些元素异常是由Tunguska爆炸事件引起的,爆炸物体可能是碳质小行星或与之类似的星体。此外,根据Ir的异常丰度,估算了爆炸物体的重量(约10~(10)t),半径(约1.5km)和爆炸释放出的能量  相似文献   
5.
Ten Sphagnum fuscum peat samples collected from different depths of a core including the layer affected by the 1908 Tunguska explosion in the Tunguska area of Central Siberia, Russia, were analyzed by ICP-MS to determine the concentrations of Pd, Rh, Ru, Co, REE, Y, Sr, and Sc. The analytical results indicate that the Pd and Rh concentrations in the event- and lower layers were 14.0–19.9, and 1.23–1.56 ppb, respectively, about 3–9 times and 3 times higher than the background values in the normal layers. In addition, the patterns of CI-chondrite-normalized REE in the event layers were much flatter than in the normal layers, and differed from those in the nearby traps. Hence, it can be inferred from the characteristics of the elemental geochemistry that the explosion was probably associated with extraterrestrial material, and which, most probably, was a small comet core the dust fraction of which was chemically similar to carbonaceous chondrites (CI). In terms of the Pd and REE excess fluxes in the explosion area, it can be estimated that the celestial body that exploded over Tunguska in 1908 weighed more than 106 t, corresponding to a radius of >60 m. If the celestial body was a comet, then its total mass was more than 2×107 t, and it had >160 m radius, and released an energy of >107 t TNT.  相似文献   
6.
7.
Two peat columns from Tunguska (Siberia) were analysed for pollen, spores, charcoal, trace elements and γ-emitters in order to identify the fingerprints of the impact of a still unidentified cosmic body (TCB), which occurred in the summer of 1908, and the level of environmental pollution in a background area of central Siberia. Peat layers were subject to non-destructive γ-ray spectrometry to derive radiochronology by the excess 210Pb method. The age-to-depth relationship was crosschecked by using both 1963 horizon of 137Cs associated to maximum global fallout deposition and palynological data profiles. Vertical distributions of trace elements in the peat columns were obtained by PIXE multielemental analysis allowing determination of the levels of environmental contamination in a background region of the Siberian taiga.The association of heavy metals such as Ni, Co and Cu in the profiles suggests the connection of the area with mining and metal smelting activity in the north of the region through atmospheric circulation. As concerns global scale contamination, the inventory of the artificial radionuclide 137Cs (4.6 kBq m− 2) shows a value typical of remote slightly contaminated areas resulting from global scale redistribution of radioactive fallout from Cold War nuclear weapon testing. The atmospheric inventory of the natural radionuclide 210Pb, for which a mean annual flux of 200 Bq m− 2 yr− 1 has been calculated, is typical of continental regions.The influence of Tunguska Cosmic Body in the peat is recognizable by a large discontinuity in the palynological profile of the peat monolith at a depth coinciding with the 1908 layer as determined by the 210Pb technique, showing a large peak of total pollen counting attributed to the impact of the shockwave on the area in which huge tree stands were destroyed. Following the event, tree pollen concentration decreases abruptly showing the temporary inception of a mire environment with an increase of Sphagnum spore concentrations. Results of elemental analysis so far available do not show anomalies in the concentration profiles at depths coinciding with the Tunguska event layer indicating the need for pre-concentration technique enabling the detection of element associations typical of extraterrestrial materials.  相似文献   
8.
9.
This paper summarizes the challenges of identifying planetary-origin meteorites of non-igneous composition-particularly those of sedimentary origin.Evidence for putative sedimentary-origin(sedtype)meteorites and their potential parent bodies is reviewed,suggesting that the list of candidate parent bodies for sed-type meteorites includes,but is not limited to,Mars,Enceladus,Ganymede,Europa,Ceres,Vesta,and other hypothetical planets that existed between the orbits of Mars and Jupiter in the past.The extraterrestrial origin and probable parent body for sed-type meteorites should be assessed based on multiple lines of evidence,and not solely limited to tests of oxygen and noble gas isotopes,whose signatures may undergo terrestrial contamination and which may exhibit significant heterogeneity within both the Solar System and parent cosmic bodies.The observed fall of a cosmic body,evidence of hypervelocity fall,signs of impact,presence of fusion crust,melting,and/or shock deformation features in impactor fragments should be considered as priority signs of meteoritic origin.  相似文献   
10.
建立了一个用酸(HF、HCI、HNO3、HCIO4)溶解通古斯地区沉积物样品,以Re为内标元素,用电感耦合等离子体质谱(ICP-MS)测定其中铂族元素的分析方法。方法检出限为0.001-0.06μg/L,回收率大于85%。用该方法分析了9个取自通古斯地区的沉积物样品,发现了Ru、Rh、Pd、Ir、Pt等元素的异常。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号