首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   0篇
  国内免费   2篇
地质学   2篇
天文学   134篇
综合类   1篇
  2019年   1篇
  2017年   2篇
  2015年   15篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   15篇
  2008年   13篇
  2007年   26篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   9篇
  2002年   5篇
  1998年   1篇
  1996年   1篇
  1995年   8篇
  1990年   2篇
  1987年   1篇
  1985年   1篇
排序方式: 共有137条查询结果,搜索用时 78 毫秒
1.
The remnant resulting from the merger of two neutron stars produces neutrinos in copious amounts. In this paper we present the neutrino emission results obtained via Newtonian, high-resolution simulations of the coalescence event. These simulations use three-dimensional smoothed particle hydrodynamics together with a nuclear, temperature-dependent equation of state and a multiflavour neutrino leakage scheme. We present the details of our scheme, discuss the neutrino emission results from a neutron star coalescence and compare them with the core-collapse supernova case where neutrino emission has been studied for several decades. The average neutrino energies are similar to those in the supernova case, but contrary to the latter, the luminosities are dominated by electron-type antineutrinos that are produced in the hot, neutron-rich, thick disc of the merger remnant. The cooler parts of this disc contain substantial fractions of heavy nuclei, which, however, do not influence the overall neutrino emission results significantly. Our total neutrino luminosities from the merger event are considerably lower than those found in previous investigations. This imposes constraints on the ability of neutron star mergers to produce a gamma-ray burst via neutrino annihilation. The neutrinos are emitted preferentially along the initial binary rotation axis, an event seen 'pole-on' would appear much brighter in neutrinos than a similar event seen 'edge-on'.  相似文献   
2.
Recent advances in the understanding of the properties of supernova remnant shocks have been precipitated by theChandra and XMM X-ray Observatories, and the HESS Atmospheric Čerenkov Telescope in the TeV band. A critical problem for this field is the understanding of the relative degree of dissipative heating/energization of electrons and ions in the shock layer. This impacts the interpretation of X-ray observations, and moreover influences the efficiency of injection into the acceleration process, which in turn feeds back into the thermal shock layer energetics and dynamics. This paper outlines the first stages of our exploration of the role of charge separation potentials in non-relativistic electron-ion shocks where the inertial gyro-scales are widely disparate, using results from a Monte Carlo simulation. Charge density spatial profiles were obtained in the linear regime, sampling the inertial scales for both ions and electrons, for different magnetic field obliquities. These were readily integrated to acquire electric field profiles in the absence of self-consistent, spatial readjustments between the electrons and the ions. It was found that while diffusion plays little role in modulating the linear field structure in highly oblique and perpendicular shocks, in quasi-parallel shocks, where charge separations induced by gyrations are small, and shock-layer electric fields are predominantly generated on diffusive scales.  相似文献   
3.
Neutrino energy spectra have been calculated based on the recently measured energy spectra of Galactic very high energy γ-ray sources. Based on these neutrino spectra the expected event rates in the ANTARES neutrino telescope and KM3NeT, a future neutrino telescope in the Mediterranean Sea with an instrumented volume of one km3, have been calculated. For the brightest γ-ray sources we find event rates of the order of one neutrino per year. Although the neutrino event rates are comparable to the background from atmospheric neutrinos the detection of individual sources seems possible.  相似文献   
4.
According to recent observational and theoretical progresses, the DUrca process (direct Urca process) may be excluded from the category of neutron star cooling mechanisms. This result, combined with the latest nuclear symmetry energy experiments, will provide us an independent way of testing the EOS (equation of state) for supernuclear density. For example, soft EOSs, such as FPS, will probably be excluded.  相似文献   
5.
We investigate a possibility that non-thermal X-ray emission in a supernova remnant(SNR) is produced by jitter radiation, which is the analogue of synchrotron radiation in small-scale random magnetic fields. We can fit the multi-wavelength data of SNRs RX J1713.7-3946 (G347.3-0.5) and RX J0852.0-4622 (G266.6-1.2) by constructing pure jitter and inverse Compton (IC) emission models. We find that the physical fit parameters of random magnetic fields take values of several tens of μG strength and of the order of ∼107 cm correlation length. These properties of random magnetic fields in collisionless shock of SNRs are discussed.   相似文献   
6.
We have performed 2-dimensional MHD simulations of collapsars with magnetic fields and neutrino cooling/heating processes. It is found that explosion energy of a hypernova is not obtained from the neutrino heating process. However, strong jet is found when magnetic fields are included, and total energy of the jet component can be of the order of 1052 erg, which is comparable to the one of a hypernova.  相似文献   
7.
We present a new experimental platform for studies of turbulence and turbulent mixing in accelerating and rotating fluids. The technology is based on the ultra-high performance optical holographic digital data storage. The state-of-the-art electro-mechanical, electronic, and laser components allow for realization of turbulent flows with high Reynolds number (>107) in a relatively small form-factor, and quantification of their properties with extremely high spatio-temporal resolutions and high data acquisition rates. The technology can be applied for investigation of a large variety of hydrodynamic problems including the fundamental properties of non-Kolmogorov turbulence and turbulent mixing in accelerating, rotating and multiphase flows, magneto-hydrodynamics, and laboratory astrophysics. Unique experimental and metrological capabilities enable the studies of spatial and temporal properties of the transports of momentum, angular momentum, and energy and the identification of scalings, invariants, and statistical properties of these complex turbulent flows.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号