首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
天文学   16篇
  2007年   8篇
  2006年   1篇
  2001年   1篇
  1995年   7篇
排序方式: 共有17条查询结果,搜索用时 906 毫秒
1.
At an early stage in the lives of stars and galaxies when they are surrounded by discs, vorticity in the disc concentrates into a central vortex, thus converting a Keplerian velocity fieldu ø r –1/2 into an irrotational velocity fieldu ør –1, which implies inward transfer of angular momentum. Centrifugal forces due to spin-up of the inner region and gravity dominant in the outer region then squeeze gas at intermediate layers, increasing pressure gradient in the axial direction sufficiently to drive a wide-angle low-velocity bipolar outflow from the disc. A logarithmic singularity of vorticity at the axis implies strong centrifugal forces which expand plasma to radiusR where pressure gradient balances centrifugal force density of ions; the much weaker centrifugal force density of electrons cannot balance pressure gradient, so that electrons are driven inwards relative to ions until charge separation limits the relative displacement. Now the radial gradient ofu øcauses ions to rotate at a different rate to electrons, generating an azimuthal current densityj øwhich is the source of an axial magnetic fieldB zin the core of the central vortex. Centrifuging carries lines of B to the core wall, where they are wound into helical force-free configuration with B j. An annular channel of radiusR and thickness R into which parallel helical lines ofj andB are compressed constitutes a magnetic vortex tube (MVT). An MVT separates an inner high-velocity highly collimated outflow from the outer low-velocity wide-angle outflow, and is responsible for jets. Magnetic pinches in the MVT may constrict the core flow at HH objects.  相似文献   
2.
Two pairs of giant (linear size 1 pc) bow shock structures have been discovered, each located symmetrically about HH 1/2 and HH 124. Their Herbig-Haro (HH) natures have been confirmed by narrow band CCD imaging on and off [SII] 6717/6731 and/or slit spectroscopy. Multiple bow shocks are known associated with a few HH objects such as HH 34, and are interpreted as evidence for recurrent outflow activity of the exciting sources. The giant bow shocks associated with HH 1/2 or HH 124 provide further, beautiful examples of this phenomenon and, with dynamical ages of nearly 20000 yr in both pairs, extend its timescale by more than an order of magnitude.  相似文献   
3.
We present experimental data on the steady state deflection of a highly supersonic jet by a side-wind in the laboratory. The use of a long interaction region enables internal shocks to fully cross the jet, leading to the development of significantly more structure in the jet than in previous work with a similar setup (Lebedev et al., 2004). The ability to control the length of the interaction region in the laboratory allows the switch between a regime representing a clumpy jet or wind and a regime similar to a slowly varying mass loss rate. The results indicate that multiple internal oblique shocks develop in the jet and the possible formation of a second working surface as the jet attempts to tunnel through the ambient medium.  相似文献   
4.
We discuss the star-disk electric circuit for a young stellar object (YSO) and calculate the expected torques on the star and the disk. We obtain the same disk magnetic field and star-disk torques as given by standard magnetohydrodynamic (MHD) analysis. We show how a short circuit in the star-disk electric circuit may produce a magnetically-driven jet flow from the inner edge of a disk surrounding a young star. An unsteady bipolar jet flow is produced that flows perpendicular to the disk plane. Jet speeds of order hundreds of kilometers per second are possible, while the outflow mass loss rate is proportional to the mass accretion rate and is a function of the disk inner radius relative to the disk co-rotation radius.  相似文献   
5.
Under suitable conditions on laser intensity, focal spot radius and atomic number a radiative jet was launched from a planar target. This jet was produced using a relatively low energy laser pulse, below 500 J and it presents similarities with astrophysical protostellar jets. It lasts more than 10 ns, extends over several millimeters, has velocity more than 500 km/s, the Mach number more than 10 and the density above 1018 cm−3. The mechanism of jet formation was inferred from the dimensional analysis and hydrodynamic two-dimensional simulations. It is related to the radiative cooling while the magnetic fields play a minor role. PACS numbers: 98.38.Fs, 52.50.Jm, 95.30.Qd  相似文献   
6.
The recent detection of very-high-energy (GeV – TeV) γ-ray emission from the Galactic black-hole candidate and microquasar LS 5039 has sparked renewed interest in jet models for the high-energy emission in those objects. In this work, we have focused on models in which the high-energy emission results from synchrotron and Compton emission by relativistic electrons in the jet (leptonic jet models). Particular attention has been paid to a possible orbital modulation of the high-energy emission due to azimuthal asymmetries caused by the presence of the companion star. Both orbital-phase dependentγγ absorption and Compton scattering of optical/UV photons from the companion star may lead to an orbital modulation of the gamma-ray emission. We make specific predictions which should be testable with refined data from HESS and the upcoming GLAST mission.  相似文献   
7.
In the 3 decades since winds from young stars were discovered, there have been many observations of bipolar molecular flows and ionized jets, and it has been recognized that outflows are intimately linked to star formation. Despite many observational clues and theoretical ideas, we still do not have a fully coherent picture of the outflow process.  相似文献   
8.
Collimated flows ejected from young stars are believed to play a vital role in the star formation process by extracting angular momentum from the accretion disk. We discuss the first experiments to simulate rotating radiatively cooled, hypersonic jets in the laboratory. A modification of the conical wire array $z$-pinch is used to introduce angular momentum into convergent flows of plasma, a jet-forming standing shock and into the jet itself. The rotation of the jet is evident in laser imaging through the presence of discrete filaments which trace the rotational history of the jet. The presence of angular momentum results in a hollow density profile in both the standing conical shock and the jet.  相似文献   
9.
This paper describes a comparison of observations of the HH 30 jet/counterjet system and theoretical models of jets propagating in a strongly stratified medium. We find that the observed westward bending of the HH 30 jet and counterjet can be explained as the result of a plane-parallel pressure stratification of the surrounding environment. This model predicts specific properties for the kinematics of the outflow, that could be straight-forwardly checked with future spectroscopic and proper motion studies of HH 30.  相似文献   
10.
We present the first-ever simulations of non-ideal magnetohydrodynamical (MHD) stellar winds coupled with disc-driven jets where the resistive and viscous accretion disc is self-consistently described. The transmagnetosonic, collimated MHD outflows are investigated numerically using the VAC code. Our simulations show that the inner outflow is accelerated from the central object hot corona thanks to both the thermal pressure and the Lorentz force. In our framework, the thermal acceleration is sustained by the heating produced by the dissipated magnetic energy due to the turbulence. Conversely, the outflow launched from the resistive accretion disc is mainly accelerated by the magneto-centrifugal force. We also show that when a dense inner stellar wind occurs, the resulting disc-driven jet have a different structure, namely a magnetic structure where poloidal magnetic field lines are more inclined because of the pressure caused by the stellar wind. This modification leads to both an enhanced mass ejection rate in the disc-driven jet and a larger radial extension which is in better agreement with the observations besides being more consistent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号