首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
天文学   4篇
自然地理   1篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
近年来激光物理与应用的进展促成了激光天文动力学空间任务概念的提出。在激光天文动力学任务概念研究方面 ,必须对由远程航天器上传回的激光进行讯号的测量与处理。激光经过长距离的传输后 ,功率大幅下降 ,因此在空间任务概念的考虑上 ,弱光锁相是计划中关键性的技术。由航天器射来的激光 ,经过望远镜聚光后与本地激光进行锁相 ,由本地激光承载及传达太空激光的相位信息。实验中 ,我们使用 2支半导体激光泵浦非平面环形共振腔钇镏石激光 (Diodelaserpumpednon -planarringcavityNd :YAGlaser) ,分别代表远程的弱光及代表本地的强光 ,建立弱光锁相环路系统 (weak -lightphase -lockedloopsystem)。以中性光强度滤光器 (ND -filter;neutraldensityfilter)减弱光讯号来仿真远程激光传来的弱光。在相位探测部分使用均衡探测法 ,消除激光强度噪声 ,以提高讯噪比。同时配合适当的环路滤波器 ,控制激光频率 ,提高锁相的能力。对 2nW的弱光与 2mW的强光可长时间锁相 ,其均方根相位误差为 57mrad。 2 0 0pW的弱光与 2 0 0 μW的强光锁相时间可达 2h以上 ,其相位误差为 2 0 0mrad。 2 0pW的弱光与 2 0 0 μW的强光锁相时间亦可达 2h以上 ,其相位误差为 1 60mrad。最后 ,我们对 2pW的弱光与 2 0 0 μW的强光锁相 ,  相似文献   
2.
3.
A concept for an Impact Mitigation Preparation Mission, called Don Quijote, is to send two spacecrafts to a Near-Earth Asteroid (NEA): an Orbiter and an Impactor. The Impactor collides with the asteroid while the Orbiter measures the resulting change in the asteroid's orbit, by means of a Radio Science Experiment (RSE) carried out before and after the impact. Three parallel Phase A studies on Don Quijote were carried out for the European Space Agency: the research presented here reflects the outcomes of the study by QinetiQ. We discuss the mission objectives with regard to the prioritisation of payload instruments, with emphasis on the interpretation of the impact. The Radio Science Experiment is described and it is examined how solar radiation pressure may increase the uncertainty in measuring the orbit of the target asteroid. It is determined that to measure the change in orbit accurately a thermal IR spectrometer is mandatory, to measure the Yarkovsky effect. The advantages of having a laser altimeter are discussed. The advantages of a dedicated wide-angle impact camera are discussed and the field-of-view is initially sized through a simple model of the impact.  相似文献   
4.
How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE (Piro et al., 2007) will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy cluster formation, down to the very low redshift Universe, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (the so-called warm hot intragalactic medium). In addition EDGE, with its unprecedented capabilities, will provide key results in many important fields. These scientific goals are feasible with a medium class mission using existing technology combined with innovative instrumental and observational capabilities by: (a) observing with fast reaction Gamma-Ray Bursts with a high spectral resolution. This enables the study of their star-forming and host galaxy environments and the use of GRBs as back lights of large scale cosmological structures; (b) observing and surveying extended sources (galaxy clusters, WHIM) with high sensitivity using two wide field of view X-ray telescopes (one with a high angular resolution and the other with a high spectral resolution). The mission concept includes four main instruments: a Wide-field Spectrometer (0.1–2.2 eV) with excellent energy resolution (3 eV at 0.6 keV), a Wide-Field Imager (0.3–6 keV) with high angular resolution (HPD = 15”) constant over the full 1.4 degree field of view, and a Wide Field Monitor (8–200 keV) with a FOV of ? of the sky, which will trigger the fast repointing to the GRB. Extension of its energy response up to 1 MeV will be achieved with a GRB detector with no imaging capability. This mission is proposed to ESA as part of the Cosmic Vision call. We will outline the science drivers and describe in more detail the payload of this mission.  相似文献   
5.
A statistical study has been carried out of the availability of favourable flight opportunities to near-Earth asteroids with orbits similar to the Earth's. Emphasis is given to rendezvous-type mission profiles employing two-burn impulsive transfers. Velocity-optimized Lambert trajectories for a sample of 27 actual objects were calculated and compiled in a database. The velocity and flight time statistics of the resulting 1200 different solutions covering a period of 11 years have been investigated and discussed. Comparison with typical flight profiles to the Moon and near planets has revealed flight opportunities to 5 objects within a decade from the present requiring less ΔV than favourable flight opportunities to Mars or Venus. One of the objects involved, 1999 AO10, can be rendezvoused with using a total velocity increment that is smaller than that required to establish a lunar orbiter. The use of slow flybys for the most scientifically appealing targets is illustrated through an example trajectory involving the C-class binary object 1996 FG3. The challenges and opportunities for doing science in proximity to such small objects are also discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号