首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   1篇
  国内免费   1篇
地球物理   1篇
地质学   1篇
海洋学   3篇
天文学   42篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   7篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
In Reissner--Nordstr?m--de Sitter space--time, we calculate the interference phase of mass neutrino along geodesic in the radial direction, and then investigate the effects of the cosmological constant La on the phase. Morever, the expression of the interference phase can be reduced to that in Reissner--Nordstr?m space--time when Λ approaches to zero.  相似文献   
2.
Cosmological scenarios with massive unstable neutrinos are discussed. Restrictions on the mass and the lifetime of the unstable neutrino are derived from (a) age and mass density of the universe and (b) the growth of primordial fluctuations. It will not be possible to accommodate unstable neutrinos with masses above ∼ 1 ke V in standard cosmology unless they have exceedingly small lifetime: Τ <5 × 108 s.  相似文献   
3.
Because the propagation of neutrinos is affected by the presence of Earth matter, it opens new possibilities to probe the Earth’s interior. Different approaches range from techniques based upon the interaction of high energy (above TeV) neutrinos with Earth matter, to methods using the MSW effect on the oscillations of low energy (MeV to GeV) neutrinos. In principle, neutrinos from many different sources (sun, atmosphere, supernovae, beams etc.) can be used. In this talk, we summarize and compare different approaches with an emphasis on more recent developments. In addition, we point out other geophysical aspects relevant for neutrino oscillations.  相似文献   
4.
The KamLAND liquid scintillator detector demonstrated the detection of antineutrinos produced by natural radioactivities in the Earth, so-called geoneutrinos. Although this first result of geoneutrinos is consistent with current geophysical models, more accurate measurements are essential to provide a new window for exploring the inside of the Earth. In this article I would like to discuss the future prospects of KamLAND geoneutrino detection, and the possibility of directional measurement of incoming geoneutrinos. It is interesting to consider the application of geoneutrino detectors to measurements of other neutrino signals. The possibility of detecting the solar 7Be, pep and CNO neutrinos is discussed. A new type detector concept is proposed not only to explore the precise measurement of reactor neutrino oscillations but also to enable us to realize the neutrino tomography inside the Earth.  相似文献   
5.
Antineutrino data constrain the concentrations of the heat producing elements U and Th as well as potentially the concentration of K. Interpretation is similar to but not homologous with gravity. Current geoneutrino physics efficiently asks simple questions taking advantage of what is already known about the Earth. A few measurements with some sites in the ocean basins will constrain the concentration of U and Th in the crust and mantle and whether the mantle is laterally heterogeneous. These results will allow Earth science arguments about the formation, chemistry, and dynamics of the Earth to be turned around and appraised. In particular, they will tell whether the Earth accreted its expected share of these elements from the solar nebula and how long radioactive heat will sustain active geological processes on the Earth. Both aspects are essential to evaluating the Earth as a common or rare habitable planet.  相似文献   
6.
Previous first-order analytic treatments of rotation acting upon stellar equilibria are extended to include later, post-Helium burning, stages of stellar evolution. Strong differential rotation is capable of substantially increasing the photon luminosities of post-main sequence stars, and thus accelerating their evolution. On the other hand, uniform rotation reduces the photon flux for a wide range of stellar interior types and conditions. Similar conclusions are drawn regarding the effects of rotation on the emission of neutrinos in pre-collapse phases of evolution. A brief discussion of the gravitational radiation emitted during these phases is also given.  相似文献   
7.
We present simulation results for the detection of ultra-high energy (UHE) cosmic ray (CR) and neutrino interactions in the Moon by radio-telescopes. We simulate the expected radio signal at Earth from such interactions, expanding on previous work to include interactions in the sub-regolith layer for single dish and multiple telescope systems. For previous experiments at Parkes, Goldstone (GLUE), and Kalyazin we recalculate the sensitivity to an isotropic flux of UHE neutrinos. We find the published sensitivity for the GLUE experiment to be too high (too optimistic) by an order of magnitude, and consequently the GLUE limit to be too low by an order of magnitude. Our predicted sensitivity for future experiments using the Australia Telescope Compact Array (ATCA) and the Australian SKA Pathfinder (ASKAP) indicate these instruments will be able to detect the more optimistic UHE neutrino flux predictions, while the square kilometre array (SKA) will also be sensitive to all bar one prediction of a diffuse ‘cosmogenic’, or ‘GZK’, neutrino flux.Outstanding theoretical uncertainties at both high-frequency and low-frequency limits currently prevent a reliable estimate of the sensitivity of the lunar Cherenkov technique for UHE cosmic ray (CR) astronomy. Here, we place limits on the effects of large-scale surface roughness on UHE CR detection, and find that when near-surface ‘formation-zone’ effects are ignored, the proposed SKA low-frequency aperture array could detect CR events above 56 EeV at a rate between 15 and 40 times that of the current Pierre Auger Observatory. Should further work indicate that formation-zone effects have little impact on UHE CR sensitivity, observations of the Moon with the SKA would allow directional analysis of UHE cosmic rays, and investigation of correlations with putative cosmic ray source populations, to be conducted with very high statistics.  相似文献   
8.
《Astroparticle Physics》2012,35(6):312-324
The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10-50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies Eν > 1011 GeV is derived from acoustic data taken over eight months.  相似文献   
9.
The radio approach based on the Askaryan effect for detecting the ultra-high energy cosmic neutrinos has become a mature experimental technique. So far the existing calculations of the Cherenkov radiation associated with the Askaryan effect has been mostly based on the far-field approximation, whose validity maybe challenged when the detector is close to the event. In this paper we present an alternative approach to calculate the Cherenkov pulse by a numerical code based on the finite difference time-domain (FDTD) method. This approach has the advantage of providing the solution everywhere in space, contrary to other methods that rely on the far-field approximation. We also present a one-dimensional theoretical model for the shower with analytical solution, which helps to elucidate our nonzero-width simulation results. We show that for a shower with symmetric longitudinal development, the resulting near-field waveform would be asymmetric in time. In addition, we demonstrate that for a shower elongated by the LPM (Landau-Pomeranchuk-Migdal) effect and thus with a multi-peak structure, a bipolar, asymmetric waveform is still preserved in the near-field regime irrespective of the specific variations of the multi-peak structure, which makes it a generic, distinctive feature. This should provide an important characteristic signature for the identification of ultra-high energy cosmogenic neutrinos.  相似文献   
10.
We have developed an algorithm for taking into account the neutrino scattering in the approximation of neutrino heat conduction. We show that in the case of incoherent neutrino scattering (e.g., by electrons), the coefficients of the temperature and chemical potential gradients are averaged over the neutrino energy using functions that can be found by numerically solving integral equations. The coherent scattering by free nucleons and atomic nuclei can be described by introducing a transport cross section. We suggest a new method for calculating the neutrino—electron scattering functions that is based on Fermi—Dirac functions of integer indices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号