首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
天文学   2篇
  2007年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
We present a new method to study the long-term evolution of cometary nuclei in order to estimate their original size, and we consider the case of comets 46P/Wirtanen (hereafter 46P) and 67P/Churyumov–Gerasimenko (hereafter 67P). We calculate the past evolution of the orbital elements of both comets over 100 000 yr using a Bulirsch–Stoer integrator and over 450 000 yr using a Radau integrator, and we incorporate a realistic model of the erosion of their nucleus. Their long-term orbital evolution is prominently chaotic, resulting from several close encounters with planets, and this result is independent of the choice of the integrator and of the presence or not of non-gravitational forces. The dynamical lifetime of comet 46P is estimated at ∼133 000 yr and that of comet 67P at ∼105 000 yr. Our erosion model assumes a spherical nucleus composed of a macroscopic mixture of two thermally decoupled components, dust and pure water ice. Erosion strongly depends upon the active fraction and the density of the nucleus. It mainly takes place at heliocentric distances <4 au and lasts for only ∼7 per cent of the lifetime. Assuming a density of 300 kg m−3 and an average active fraction over time of 10 per cent, we find an initial radius of ∼1.3 km for 46P and ∼2.8 km for 67P. Upper limit are obtained assuming a density of 100 kg m−3 and an active fraction of 100 per cent, and amounts to 21 km for 46P and 25 km for 67P. Erosion acts as a rejuvenating process of the surface so that exposed materials on the surface may only contain very little quantities of primordial materials. However, materials located just under it (a few centimetres to metres) may still be much less evolved. We will apply this method to several other comets in the future.  相似文献   
2.
Broadband imaging of Comet 67P/Churyumov–Gerasimenko has provided more data on the characterisation of the target of the ESA Rosetta Mission. The comet monitoring between r h=2.37 and r h=2.78 AU postperihelion shows a prominent dust coma which extends up to ≈ 25,000 km from the nucleus, and a long dust structure in approximately anti-tail direction, reaching at least 230,000 km, identified as a neck-line structure. The non-isotropic dust emission is detected from the structures in the inner coma, and it is reflected on the slope of linear fits of surface brightness profiles vs. cometocentric projected distance in log–log representation as m ≈ 0.83−0.941. Besides the long dust spike at position angle of 295°, the morphological study of the dust coma confirms the presence of two structures at position angles of 95 and 195° where the overabundance of dust can be as high as 50% at ρ ≤ 30,000 km. The A f ρ parameter derived from our R broadband data is 26.0 and 29.8 cm at r h=2.37 and 2.48 AU postperihelion. The dust reflectivity S′(λ), a measurement of the dust colour, is 0.061±0.019, a rather neutral colour.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号