首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
  国内免费   3篇
大气科学   10篇
地球物理   11篇
地质学   13篇
海洋学   13篇
天文学   2篇
综合类   1篇
自然地理   2篇
  2022年   1篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   8篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1985年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
For a large floating structure in waves, the damping is computed by the linear diffraction/radiation theory. For most degrees of freedom, this radiation damping is adequate for an accurate prediction of the rigid body motions of the structure at the wave frequencies. This is not particularly true for the roll motion of a long floating structure. For ships, barges and similar long offshore structures, the roll damping is highly nonlinear. In these cases the radiation damping is generally quite small compared to the total damping in the system. Moreover, the dynamic amplification in roll may be large for such structures since the roll natural period generally falls within the frequency range of a typical wave energy spectrum experienced by them. Therefore, it is of utmost importance that a good estimate of the roll damping is made for such structures. The actual prediction of roll damping is a difficult analytical task. The nonlinear components of roll damping are determined from model and full scale experiments. This paper examines the roll damping components and their empirical contributions. These empirical expressions should help the designer of such floating structures. The numerical values of roll damping components of typical ships and barges in waves and current (or forward speed) are presented.  相似文献   
2.
The dimensions of sand ripples in full-scale oscillatory flows   总被引:1,自引:0,他引:1  
New large-scale experiments have been carried out in two oscillatory flow tunnels to study ripple regime sand suspension and net sand transport processes in full-scale oscillatory flows. The paper focuses on ripple dimensions and the new data are combined with existing data to make a large dataset of ripple heights and lengths for flows with field-scale amplitudes and periods. A feature of the new experiments is a focus on the effect of flow irregularity. The combined dataset is analysed to examine the range of hydraulic conditions under which oscillatory flow ripples occur, to examine the effects of flow irregularity and ripple three-dimensionality on ripple dimensions and to test and improve existing methods for predicting ripple dimensions.The following are the main conclusions. (1) The highest velocities in a flow time-series play an important role in determining the type of bedform occurring in oscillatory flow. Bedform regime is well characterised by mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth peak velocities in the case of irregular flow. (2) For field-scale flows, sand size is the primary factor determining whether equilibrium ripples will be 2D or 3D. 2D ripples occur when the sand D50 ≥ 0.30 mm and 3D ripples occur when D50 ≤ 0.22 mm (except when the flow orbital diameter is low). (3) Ripple type (2D or 3D) is the same for regular and irregular flows and ripple dimensions produced by equivalent regular and irregular flows follow a similar functional dependence on mobility number, with mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth velocities in the case of irregular flow. For much of the ripple regime, ripple dimensions have weak dependency on mobility number and ripple dimensions are similar for regular and irregular flows with the same flow orbital amplitude. However, differences in ripples produced by equivalent regular and irregular flows become significant at the high mobility end of the ripple regime. (4) Ripple dimensions predicted using the Wiberg and Harris formulae are in poor agreement with measured ripple dimensions from the large-scale experiments. Predictions based on the Mogridge et al. and the Nielsen formulae show better overall agreement with the data but also show systematic differences in cases of 3D ripples and ripples generated by irregular flows. (5) Based on the combined large-scale data, modifications to the Nielsen ripple dimension equations are proposed for the heights and lengths of 2D ripples. The same equations apply to regular and irregular flows, but with mobility number appropriately defined. 3D ripples are generally smaller than 2D ripples and estimates of 3D ripple height and length may be obtained by applying multipliers of 0.55 and 0.73 respectively to the 2D formulae. The proposed modified Nielsen formulae provide an improved fit to the large-scale data, accounting for flow irregularity and ripple three-dimensionality.  相似文献   
3.
Besides granites of the ilmenite series, in which the anisotropy of magnetic susceptibility (AMS) is mainly controlled by paramagnetic minerals, the AMS of igneous rocks is commonly interpreted as the result of the shape-preferred orientation of unequant ferromagnetic grains. In a few instances, the anisotropy due to the distribution of ferromagnetic grains, irrespective of their shape, has also been proposed as an important AMS source. Former analytical models that consider infinite geometry of identical and uniformly magnetized and coaxial particles confirm that shape fabric may be overcome by dipolar contributions if neighboring grains are close enough to each other to magnetically interact. On these bases we present and experimentally validate a two-grain macroscopic numerical model in which each grain carries its own magnetic anisotropy, volume, orientation and location in space. Compared with analytical predictions and available experiments, our results allow to list and quantify the factors that affect the effects of magnetic interactions. In particular, we discuss the effects of (i) the infinite geometry used in the analytical models, (ii) the intrinsic shape anisotropy of the grains, (iii) the relative orientation in space of the grains, and (iv) the spatial distribution of grains with a particular focus on the inter-grain distance distribution. Using documented case studies, these findings are summarized and discussed in the framework of the generalized total AMS tensor recently introduced by Cañon-Tapia (Cañon-Tapia, E., 2001. Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics, 340, 117–131.). The most important result of our work is that analytical models far overestimate the role of magnetic interaction in rock fabric quantification. Considering natural rocks as an assemblage of interacting and non-interacting grains, and that the effects of interaction are reduced by (i) the finite geometry of the interacting clusters, (ii) the relative orientation between interacting grains, (iii) their heterogeneity in orientation, shape and bulk susceptibility, and (iv) their inter-distance distribution, we reconcile analytical models and experiments with real case studies that minimize the role of magnetic interaction onto the measured AMS. Limitations of our results are discussed and guidelines are provided for the use of AMS in geological interpretation of igneous rock fabrics where magnetic interactions are likely to occur.  相似文献   
4.
Tracer tests are carried out in a heterogeneous porous medium that has a 3D correlated random distribution of the permeabilities. The fitting of numerical models provides the values of equivalent permeability and macrodispersivity characterizing a 2D homogeneous horizontal medium. Different flow configurations are studied: uniform, radial and pump and treat (doublet). The fitted parameter sets are independent of the flow type, except for the doublet. They are greater than the values predicted by stochastic theories, due to the small number of correlation lengths explored by the tracer and the limited extension of the experimental set-up. To cite this article: C. Danquigny, P. Ackerer, C. R. Geoscience 337 (2005).  相似文献   
5.
Wave Energy Converters (WECs) have excellent potential as a source of renewable energy that is yet to be commercially realised. Recent attention has focused on the installation of Oscillating Water Column (OWC) devices as a part of harbor walls to provide advantages of cost–sharing structures and proximity of power generation facilities to existing infrastructure. In this paper, an incompressible three–dimensional CFD model is constructed to simulate a fixed Multi–Chamber OWC (MC–OWC) device. The CFD model is validated; the simulation results are found to be in good agreement with experimental results obtained from a scale physical model tested in a wave tank. The validated CFD model is then used for a benchmark study of 96 numerical tests. These investigate the effects of the PTO damping caused by the power take–off (PTO) system on device performance. The performance is assessed for a range of regular wave heights and periods. The results demonstrate that a PTO system with an intermediate damping can be used for all chambers in the MC–OWC device for most wave period ranges, except for the long wave periods. These require a higher PTO damping. An increased incident wave height reduces the device capture width ratio, but there is a noticeable improvement for long wave periods.  相似文献   
6.
The hydrodynamic forces on the stationary partially submerged cylinder are investigated through towing test with Reynolds number ranging from 5 × 104 to 9 × 105. Three test groups of partially submerged cylinders with submerged depths of 0.25 D, 0.50 D, and 0.75 D and one validation group of fully submerged cylinders are conducted. During the experiments, the hydrodynamic forces on the cylinders are measured using force sensors. The test results show a considerable difference in the hydrodynamic coefficients for the partially submerged cylinders versus the fully submerged cylinders. A significant mean downward lift force is first observed for the partially submerged cylinders in a steady flow. The maximum of the mean lift coefficients can reach 1.5. Two distinct features are observed due to the effects of overtopping: random distributions in the mean drag coefficients and a clear quadratic relationship between the mean lift coefficients and the Froude number appear in the non-overtopping region. However, the novel phenomenon of a good linear relationship with the Froude number for the mean hydrodynamic coefficients is clearly shown in the overtopping region. In addition, fluctuating hydrodynamic coefficients are further proposed and investigated. These results are helpful to have a better understanding of the problem and to improve related structural designs.  相似文献   
7.
8.
Four rock types (basalt, sandstone, granite, and chalk) are examined with respect to the maximum surface temperatures which they experience when subjected to similar conditions of exposure. Rock temperature measurements are reported for an urban environment and for two experimental situations in which an infrared lamp is used to simulate heating under cold and hot conditions. Differences in rock temperatures are discussed with reference to thermal rock properties (albedo, specific heat capacity, and thermal conductivity). Some natural situations are suggested in which thermal rock properties could conceivably play a role in determining the extent to which rocks would be affected by particular weathering processes.  相似文献   
9.
The flow pattern around a cylinder, installed in a scoured channel bed, was experimentally investigated. Detailed measurements of the instantaneous 3D velocities were performed by using an Acoustic Doppler Velocity Profiler (ADVP), from which the profiles of the time-averaged velocities and turbulence stresses were obtained. It is shown that the influence of the cylinder and of the scour hole alters the approach flow; this is essentially confined to the vicinity of the cylinder and to the inside of the scour hole. The horseshoe vortex is measured as a flow reversal inside the scour hole, formed by the downward flow along the cylinder face and the reversed flow at the scour bed.  相似文献   
10.
The notion of the “urban experiment” has become increasingly prevalent and popular as a guiding concept and trope used by both scholars and policymakers, as well as by corporate actors with a stake in the future of the city. In this paper, we critically engage with this emerging focus on “urban experiments”, and with its articulation through the associated concepts of “living labs”, “future labs”, “urban labs” and the like. A critical engagement with the notion of urban experimentation is now not only useful, but a necessity: we introduce seven specific areas that need critical attention when considering urban experiments: these are focused on normativity, crisis discourses, the definition of “experimental subjects”, boundaries and boundedness, historical precedents, “dark” experiments and non-human experimental agency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号